Loading…

Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas

Artificial photosynthesis, light-driving CO conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP S atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoli...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-08, Vol.12 (1), p.4747
Main Authors: Gao, Wa, Li, Shi, He, Huichao, Li, Xiaoning, Cheng, Zhenxiang, Yang, Yong, Wang, Jinlan, Shen, Qing, Wang, Xiaoyong, Xiong, Yujie, Zhou, Yong, Zou, Zhigang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 4747
container_title Nature communications
container_volume 12
creator Gao, Wa
Li, Shi
He, Huichao
Li, Xiaoning
Cheng, Zhenxiang
Yang, Yong
Wang, Jinlan
Shen, Qing
Wang, Xiaoyong
Xiong, Yujie
Zhou, Yong
Zou, Zhigang
description Artificial photosynthesis, light-driving CO conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP S atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H O etching treatment can excitingly change the CO photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP S causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.
doi_str_mv 10.1038/s41467-021-25068-7
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_34362922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34362922</sourcerecordid><originalsourceid>FETCH-pubmed_primary_343629223</originalsourceid><addsrcrecordid>eNqFjs1KxDAUhYMgzqDzAi7kvkA0f7adpQyKrhQUt8M1SdtImpTmFunbW0HXns05fHyLw9ilFNdS6OamGGmqmgsluboVVcPrE7ZVwkgua6U3bFfKp1ij97Ix5oxttNGV2iu1Zcs7Wkx24c633hIM2c0RyTsYkfovXCC3MPaZ8uTdbCnk9EMOz6BgnSWkLnpAykOwGOMC1IcEd91TelmNV6ig9N5TgZAoQ46-DZgIOiwX7LTFWPzut8_Z1cP92-GRj_PH4N1xnMKA03L8-6r_Fb4BIuZQCg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gao, Wa ; Li, Shi ; He, Huichao ; Li, Xiaoning ; Cheng, Zhenxiang ; Yang, Yong ; Wang, Jinlan ; Shen, Qing ; Wang, Xiaoyong ; Xiong, Yujie ; Zhou, Yong ; Zou, Zhigang</creator><creatorcontrib>Gao, Wa ; Li, Shi ; He, Huichao ; Li, Xiaoning ; Cheng, Zhenxiang ; Yang, Yong ; Wang, Jinlan ; Shen, Qing ; Wang, Xiaoyong ; Xiong, Yujie ; Zhou, Yong ; Zou, Zhigang</creatorcontrib><description>Artificial photosynthesis, light-driving CO conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP S atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H O etching treatment can excitingly change the CO photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP S causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-25068-7</identifier><identifier>PMID: 34362922</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature communications, 2021-08, Vol.12 (1), p.4747</ispartof><rights>2021. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5991-0955 ; 0000-0003-1147-0051 ; 0000-0003-4847-2907 ; 0000-0001-8872-2777 ; 0000-0003-1193-1129 ; 0000-0002-9480-2586 ; 0000-0002-4529-874X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34362922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>He, Huichao</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Artificial photosynthesis, light-driving CO conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP S atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H O etching treatment can excitingly change the CO photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP S causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjs1KxDAUhYMgzqDzAi7kvkA0f7adpQyKrhQUt8M1SdtImpTmFunbW0HXns05fHyLw9ilFNdS6OamGGmqmgsluboVVcPrE7ZVwkgua6U3bFfKp1ij97Ix5oxttNGV2iu1Zcs7Wkx24c633hIM2c0RyTsYkfovXCC3MPaZ8uTdbCnk9EMOz6BgnSWkLnpAykOwGOMC1IcEd91TelmNV6ig9N5TgZAoQ46-DZgIOiwX7LTFWPzut8_Z1cP92-GRj_PH4N1xnMKA03L8-6r_Fb4BIuZQCg</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>Gao, Wa</creator><creator>Li, Shi</creator><creator>He, Huichao</creator><creator>Li, Xiaoning</creator><creator>Cheng, Zhenxiang</creator><creator>Yang, Yong</creator><creator>Wang, Jinlan</creator><creator>Shen, Qing</creator><creator>Wang, Xiaoyong</creator><creator>Xiong, Yujie</creator><creator>Zhou, Yong</creator><creator>Zou, Zhigang</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-5991-0955</orcidid><orcidid>https://orcid.org/0000-0003-1147-0051</orcidid><orcidid>https://orcid.org/0000-0003-4847-2907</orcidid><orcidid>https://orcid.org/0000-0001-8872-2777</orcidid><orcidid>https://orcid.org/0000-0003-1193-1129</orcidid><orcidid>https://orcid.org/0000-0002-9480-2586</orcidid><orcidid>https://orcid.org/0000-0002-4529-874X</orcidid></search><sort><creationdate>20210806</creationdate><title>Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas</title><author>Gao, Wa ; Li, Shi ; He, Huichao ; Li, Xiaoning ; Cheng, Zhenxiang ; Yang, Yong ; Wang, Jinlan ; Shen, Qing ; Wang, Xiaoyong ; Xiong, Yujie ; Zhou, Yong ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_343629223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wa</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>He, Huichao</creatorcontrib><creatorcontrib>Li, Xiaoning</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Wang, Jinlan</creatorcontrib><creatorcontrib>Shen, Qing</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wa</au><au>Li, Shi</au><au>He, Huichao</au><au>Li, Xiaoning</au><au>Cheng, Zhenxiang</au><au>Yang, Yong</au><au>Wang, Jinlan</au><au>Shen, Qing</au><au>Wang, Xiaoyong</au><au>Xiong, Yujie</au><au>Zhou, Yong</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2021-08-06</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4747</spage><pages>4747-</pages><eissn>2041-1723</eissn><abstract>Artificial photosynthesis, light-driving CO conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP S atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H O etching treatment can excitingly change the CO photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP S causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.</abstract><cop>England</cop><pmid>34362922</pmid><doi>10.1038/s41467-021-25068-7</doi><orcidid>https://orcid.org/0000-0001-5991-0955</orcidid><orcidid>https://orcid.org/0000-0003-1147-0051</orcidid><orcidid>https://orcid.org/0000-0003-4847-2907</orcidid><orcidid>https://orcid.org/0000-0001-8872-2777</orcidid><orcidid>https://orcid.org/0000-0003-1193-1129</orcidid><orcidid>https://orcid.org/0000-0002-9480-2586</orcidid><orcidid>https://orcid.org/0000-0002-4529-874X</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2021-08, Vol.12 (1), p.4747
issn 2041-1723
language eng
recordid cdi_pubmed_primary_34362922
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
title Vacancy-defect modulated pathway of photoreduction of CO 2 on single atomically thin AgInP 2 S 6 sheets into olefiant gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy-defect%20modulated%20pathway%20of%20photoreduction%20of%20CO%202%20on%20single%20atomically%20thin%20AgInP%202%20S%206%20sheets%20into%20olefiant%20gas&rft.jtitle=Nature%20communications&rft.au=Gao,%20Wa&rft.date=2021-08-06&rft.volume=12&rft.issue=1&rft.spage=4747&rft.pages=4747-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-25068-7&rft_dat=%3Cpubmed%3E34362922%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_343629223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/34362922&rfr_iscdi=true