Loading…

Estimating motion between avian vertebrae by contact modeling of joint surfaces

Estimating the motion between two bones is crucial for understanding their biomechanical function. The vertebral column is particularly challenging because the vertebrae articulate at more than one surface. This paper proposes a method to estimate 3D motion between two avian vertebrae, by bones surf...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2022-02, Vol.25 (2), p.123-131
Main Authors: Furet, Matthieu, Abourachid, Anick, Böhmer, Christine, Chummun, Valentine, Chevallereau, Christine, Cornette, Raphaël, De La Bernardie, Xavier, Wenger, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33
cites cdi_FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33
container_end_page 131
container_issue 2
container_start_page 123
container_title Computer methods in biomechanics and biomedical engineering
container_volume 25
creator Furet, Matthieu
Abourachid, Anick
Böhmer, Christine
Chummun, Valentine
Chevallereau, Christine
Cornette, Raphaël
De La Bernardie, Xavier
Wenger, Philippe
description Estimating the motion between two bones is crucial for understanding their biomechanical function. The vertebral column is particularly challenging because the vertebrae articulate at more than one surface. This paper proposes a method to estimate 3D motion between two avian vertebrae, by bones surface reconstruction and contact modeling. The neck of birds was selected as a case study because it is a functionally highly versatile structure combining dexterity and strength. As such, it has great potential to serve as a source for bioinspired design, for robotic manipulators for instance. First, 3D models of the vertebrae are obtained by computed tomography (CT). Next, joint surfaces of contact are approximated with polynomial surfaces, and a system of equations derived from contact modeling between surfaces is established. A constrained optimization problem is defined in order to find the best position of the vertebrae for a set of given orientations in space. As a result, the possible intervertebral range of motion is estimated.
doi_str_mv 10.1080/10255842.2021.1934676
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34392760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561922978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UClLan9Bqj-Ww6fhr174VRdAgReICZ8vetcFo16a2kyj_nl0lcOQ0o9HzzmgehH5iWGIQ8AcD4VwwsiRA8BJLypq2OUMLzNqmFoTLL1M_MfUMXaBvOb8AgMCCnaMLyqgkbQMLdH-Tix918eGpGmPxMVTGlr21odI7r0O1s6lYk7StzKHqYii6KxPZ22GORFe9RB9KlbfJ6c7m7-ir00O2P071Ej3e3jys1vXm_t_d6npTd4y1pSYWO4EZlmBaZikVArAxvAfRN5IJbgD3gksgYJqeUS5Aag7gnG6YIB2ll-jquPdZD-o1TS-kg4raq_X1Rs0zoJQxicUOT-zvI_ua4v-tzUWNPnd2GHSwcZsV4Q2WhMhWTCg_ol2KOSfrPnZjULN39e5dzd7VyfuU-3U6sTWj7T9S76In4O8R8MHFNOp9TEOvij4MMbmkQ-ezop_feAOTc4-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561922978</pqid></control><display><type>article</type><title>Estimating motion between avian vertebrae by contact modeling of joint surfaces</title><source>Taylor and Francis Science and Technology Collection</source><creator>Furet, Matthieu ; Abourachid, Anick ; Böhmer, Christine ; Chummun, Valentine ; Chevallereau, Christine ; Cornette, Raphaël ; De La Bernardie, Xavier ; Wenger, Philippe</creator><creatorcontrib>Furet, Matthieu ; Abourachid, Anick ; Böhmer, Christine ; Chummun, Valentine ; Chevallereau, Christine ; Cornette, Raphaël ; De La Bernardie, Xavier ; Wenger, Philippe</creatorcontrib><description>Estimating the motion between two bones is crucial for understanding their biomechanical function. The vertebral column is particularly challenging because the vertebrae articulate at more than one surface. This paper proposes a method to estimate 3D motion between two avian vertebrae, by bones surface reconstruction and contact modeling. The neck of birds was selected as a case study because it is a functionally highly versatile structure combining dexterity and strength. As such, it has great potential to serve as a source for bioinspired design, for robotic manipulators for instance. First, 3D models of the vertebrae are obtained by computed tomography (CT). Next, joint surfaces of contact are approximated with polynomial surfaces, and a system of equations derived from contact modeling between surfaces is established. A constrained optimization problem is defined in order to find the best position of the vertebrae for a set of given orientations in space. As a result, the possible intervertebral range of motion is estimated.</description><identifier>ISSN: 1025-5842</identifier><identifier>EISSN: 1476-8259</identifier><identifier>DOI: 10.1080/10255842.2021.1934676</identifier><identifier>PMID: 34392760</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Animal biology ; Animals ; articular surfaces ; Biomechanical Phenomena ; Biomechanics ; Bird vertebrae ; Birds ; Cervical Vertebrae ; contact modeling ; Engineering Sciences ; kinematics ; Life Sciences ; Mechanics ; Range of Motion, Articular ; Tomography, X-Ray Computed ; Vertebrate Zoology</subject><ispartof>Computer methods in biomechanics and biomedical engineering, 2022-02, Vol.25 (2), p.123-131</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33</citedby><cites>FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33</cites><orcidid>0000-0002-7238-2795 ; 0000-0003-1931-0888 ; 0000-0003-4182-4201 ; 0000-0002-1929-5211 ; 0000-0002-6608-4484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34392760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03344918$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Furet, Matthieu</creatorcontrib><creatorcontrib>Abourachid, Anick</creatorcontrib><creatorcontrib>Böhmer, Christine</creatorcontrib><creatorcontrib>Chummun, Valentine</creatorcontrib><creatorcontrib>Chevallereau, Christine</creatorcontrib><creatorcontrib>Cornette, Raphaël</creatorcontrib><creatorcontrib>De La Bernardie, Xavier</creatorcontrib><creatorcontrib>Wenger, Philippe</creatorcontrib><title>Estimating motion between avian vertebrae by contact modeling of joint surfaces</title><title>Computer methods in biomechanics and biomedical engineering</title><addtitle>Comput Methods Biomech Biomed Engin</addtitle><description>Estimating the motion between two bones is crucial for understanding their biomechanical function. The vertebral column is particularly challenging because the vertebrae articulate at more than one surface. This paper proposes a method to estimate 3D motion between two avian vertebrae, by bones surface reconstruction and contact modeling. The neck of birds was selected as a case study because it is a functionally highly versatile structure combining dexterity and strength. As such, it has great potential to serve as a source for bioinspired design, for robotic manipulators for instance. First, 3D models of the vertebrae are obtained by computed tomography (CT). Next, joint surfaces of contact are approximated with polynomial surfaces, and a system of equations derived from contact modeling between surfaces is established. A constrained optimization problem is defined in order to find the best position of the vertebrae for a set of given orientations in space. As a result, the possible intervertebral range of motion is estimated.</description><subject>Animal biology</subject><subject>Animals</subject><subject>articular surfaces</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bird vertebrae</subject><subject>Birds</subject><subject>Cervical Vertebrae</subject><subject>contact modeling</subject><subject>Engineering Sciences</subject><subject>kinematics</subject><subject>Life Sciences</subject><subject>Mechanics</subject><subject>Range of Motion, Articular</subject><subject>Tomography, X-Ray Computed</subject><subject>Vertebrate Zoology</subject><issn>1025-5842</issn><issn>1476-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PGzEQhi3UClLan9Bqj-Ww6fhr174VRdAgReICZ8vetcFo16a2kyj_nl0lcOQ0o9HzzmgehH5iWGIQ8AcD4VwwsiRA8BJLypq2OUMLzNqmFoTLL1M_MfUMXaBvOb8AgMCCnaMLyqgkbQMLdH-Tix918eGpGmPxMVTGlr21odI7r0O1s6lYk7StzKHqYii6KxPZ22GORFe9RB9KlbfJ6c7m7-ir00O2P071Ej3e3jys1vXm_t_d6npTd4y1pSYWO4EZlmBaZikVArAxvAfRN5IJbgD3gksgYJqeUS5Aag7gnG6YIB2ll-jquPdZD-o1TS-kg4raq_X1Rs0zoJQxicUOT-zvI_ua4v-tzUWNPnd2GHSwcZsV4Q2WhMhWTCg_ol2KOSfrPnZjULN39e5dzd7VyfuU-3U6sTWj7T9S76In4O8R8MHFNOp9TEOvij4MMbmkQ-ezop_feAOTc4-8</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Furet, Matthieu</creator><creator>Abourachid, Anick</creator><creator>Böhmer, Christine</creator><creator>Chummun, Valentine</creator><creator>Chevallereau, Christine</creator><creator>Cornette, Raphaël</creator><creator>De La Bernardie, Xavier</creator><creator>Wenger, Philippe</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7238-2795</orcidid><orcidid>https://orcid.org/0000-0003-1931-0888</orcidid><orcidid>https://orcid.org/0000-0003-4182-4201</orcidid><orcidid>https://orcid.org/0000-0002-1929-5211</orcidid><orcidid>https://orcid.org/0000-0002-6608-4484</orcidid></search><sort><creationdate>20220203</creationdate><title>Estimating motion between avian vertebrae by contact modeling of joint surfaces</title><author>Furet, Matthieu ; Abourachid, Anick ; Böhmer, Christine ; Chummun, Valentine ; Chevallereau, Christine ; Cornette, Raphaël ; De La Bernardie, Xavier ; Wenger, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal biology</topic><topic>Animals</topic><topic>articular surfaces</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bird vertebrae</topic><topic>Birds</topic><topic>Cervical Vertebrae</topic><topic>contact modeling</topic><topic>Engineering Sciences</topic><topic>kinematics</topic><topic>Life Sciences</topic><topic>Mechanics</topic><topic>Range of Motion, Articular</topic><topic>Tomography, X-Ray Computed</topic><topic>Vertebrate Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furet, Matthieu</creatorcontrib><creatorcontrib>Abourachid, Anick</creatorcontrib><creatorcontrib>Böhmer, Christine</creatorcontrib><creatorcontrib>Chummun, Valentine</creatorcontrib><creatorcontrib>Chevallereau, Christine</creatorcontrib><creatorcontrib>Cornette, Raphaël</creatorcontrib><creatorcontrib>De La Bernardie, Xavier</creatorcontrib><creatorcontrib>Wenger, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furet, Matthieu</au><au>Abourachid, Anick</au><au>Böhmer, Christine</au><au>Chummun, Valentine</au><au>Chevallereau, Christine</au><au>Cornette, Raphaël</au><au>De La Bernardie, Xavier</au><au>Wenger, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating motion between avian vertebrae by contact modeling of joint surfaces</atitle><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle><addtitle>Comput Methods Biomech Biomed Engin</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>25</volume><issue>2</issue><spage>123</spage><epage>131</epage><pages>123-131</pages><issn>1025-5842</issn><eissn>1476-8259</eissn><abstract>Estimating the motion between two bones is crucial for understanding their biomechanical function. The vertebral column is particularly challenging because the vertebrae articulate at more than one surface. This paper proposes a method to estimate 3D motion between two avian vertebrae, by bones surface reconstruction and contact modeling. The neck of birds was selected as a case study because it is a functionally highly versatile structure combining dexterity and strength. As such, it has great potential to serve as a source for bioinspired design, for robotic manipulators for instance. First, 3D models of the vertebrae are obtained by computed tomography (CT). Next, joint surfaces of contact are approximated with polynomial surfaces, and a system of equations derived from contact modeling between surfaces is established. A constrained optimization problem is defined in order to find the best position of the vertebrae for a set of given orientations in space. As a result, the possible intervertebral range of motion is estimated.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>34392760</pmid><doi>10.1080/10255842.2021.1934676</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7238-2795</orcidid><orcidid>https://orcid.org/0000-0003-1931-0888</orcidid><orcidid>https://orcid.org/0000-0003-4182-4201</orcidid><orcidid>https://orcid.org/0000-0002-1929-5211</orcidid><orcidid>https://orcid.org/0000-0002-6608-4484</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1025-5842
ispartof Computer methods in biomechanics and biomedical engineering, 2022-02, Vol.25 (2), p.123-131
issn 1025-5842
1476-8259
language eng
recordid cdi_pubmed_primary_34392760
source Taylor and Francis Science and Technology Collection
subjects Animal biology
Animals
articular surfaces
Biomechanical Phenomena
Biomechanics
Bird vertebrae
Birds
Cervical Vertebrae
contact modeling
Engineering Sciences
kinematics
Life Sciences
Mechanics
Range of Motion, Articular
Tomography, X-Ray Computed
Vertebrate Zoology
title Estimating motion between avian vertebrae by contact modeling of joint surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20motion%20between%20avian%20vertebrae%20by%20contact%20modeling%20of%20joint%20surfaces&rft.jtitle=Computer%20methods%20in%20biomechanics%20and%20biomedical%20engineering&rft.au=Furet,%20Matthieu&rft.date=2022-02-03&rft.volume=25&rft.issue=2&rft.spage=123&rft.epage=131&rft.pages=123-131&rft.issn=1025-5842&rft.eissn=1476-8259&rft_id=info:doi/10.1080/10255842.2021.1934676&rft_dat=%3Cproquest_pubme%3E2561922978%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-2e1f814190b74e338801bb5d08d69485b01d859020b6d435809a500ffa6482c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561922978&rft_id=info:pmid/34392760&rfr_iscdi=true