Loading…

Development of a novel polymer-based carrier for deformable liposomes for the controlled dermal delivery of naringenin

In recent years, the incidence of skin cancer has increased worldwide, presenting a significant burden on healthcare services. Chemotherapy intervention is often not appropriate for all patients due to localized adverse effects on skin physiology. The aim of this study was, therefore, to consider th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of liposome research 2022-04, Vol.32 (2), p.181-194
Main Authors: Marwah, Mandeep, Badhan, Raj K. S., Lowry, Deborah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the incidence of skin cancer has increased worldwide, presenting a significant burden on healthcare services. Chemotherapy intervention is often not appropriate for all patients due to localized adverse effects on skin physiology. The aim of this study was, therefore, to consider the development of a novel phytochemical-based deformable liposomal formulation suspended in an aqueous gel for the controlled-release of naringenin. Naringenin is an antioxidant, free radical scavenger, anti-inflammatory agent, and immune system modulator thus may be potentially useful as a pharmacological anti-cancer agent. Formulated liposomes incorporating an increasing loading of Tween 20 (from 0% w/w to 10% w/w) demonstrated a significant decrease in deformability index (DI) (80.71 ± 2.02-59.17 ± 4.42 %), indicating an increase in elasticity. The release of naringenin over 24 h was directly affected by Tween-20 concentration, decreasing from 100.72%±4.98% to 79.53%±3.68% for 0% and 2% w/w Tween 20, respectively. Further, the incorporation of deformable liposomes into hydroxyethylcellulose (HEC) and hydroxypropyl methylcellulose (HPMC) gels resulting in a further retardation of naringenin release, 23.21%±1.17% and 19.83%±1.50%, respectively, over 24 h. Incubation of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate-loaded liposomes with human dermal fibroblast (HDF) and keratinocyte cells demonstrated intracellular accumulation within 2 h, confirming deformable liposomes may be beneficial in improving drug penetration across dermal cells and would be valuable in emerging controlled-release formulations.
ISSN:0898-2104
1532-2394
DOI:10.1080/08982104.2021.1956529