Loading…
Translational control of gene function through optically regulated nucleic acids
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene f...
Saved in:
Published in: | Chemical Society reviews 2021-11, Vol.5 (23), p.13253-13267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63 |
container_end_page | 13267 |
container_issue | 23 |
container_start_page | 13253 |
container_title | Chemical Society reviews |
container_volume | 5 |
creator | Darrah, Kristie E Deiters, Alexander |
description | Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and
in vivo
models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Gene function can be precisely controlled with light-responsive nucleic acids. |
doi_str_mv | 10.1039/d1cs00257k |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34739027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603989643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxYNY2rX2xXcl0BcRpt58TGbyIpRVa2mhgvU5ZDM3u1OzkzWZKfS_b9at68dTLjm_e3LIIeQVgzMGQr_vmMsAvG5-PCMzJhVUspHyOZmBAFUBMH5EXuR8VybWKH5IjoRshAbezMjX22SHHOzYx8EG6uIwphho9HSJA1I_DW4r0XGV4rRc0bgZe2dDeKAJl1PZw44OkwvYO2pd3-WX5MDbkPHk6Twm3z9_up1_qa5vLi7n59eVk1qOFSqvbePBKr_gLdhOedQ1cMdqrlGB565FBkopEAtd7rTFRrQaS3LnvRLH5MPOdzMt1tg5LMFtMJvUr216MNH25l9l6FdmGe9NqwFAtcXg7ZNBij8nzKNZ99lhCHbAOGXDay25bmq5fev0P_QuTqn8V6FKPt1qJUWh3u0ol2LOCf0-DAOzLcp8ZPNvv4q6KvCbv-Pv0d_NFOD1DkjZ7dU_TYtHDSmZJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603989643</pqid></control><display><type>article</type><title>Translational control of gene function through optically regulated nucleic acids</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Darrah, Kristie E ; Deiters, Alexander</creator><creatorcontrib>Darrah, Kristie E ; Deiters, Alexander</creatorcontrib><description>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and
in vivo
models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Gene function can be precisely controlled with light-responsive nucleic acids.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/d1cs00257k</identifier><identifier>PMID: 34739027</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological activity ; Embryos ; Gene Expression ; Light ; Nucleic Acids ; Oligonucleotides ; Optical control ; Proteins - genetics ; Temporal resolution</subject><ispartof>Chemical Society reviews, 2021-11, Vol.5 (23), p.13253-13267</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</citedby><cites>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</cites><orcidid>0000-0003-0234-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darrah, Kristie E</creatorcontrib><creatorcontrib>Deiters, Alexander</creatorcontrib><title>Translational control of gene function through optically regulated nucleic acids</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and
in vivo
models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Gene function can be precisely controlled with light-responsive nucleic acids.</description><subject>Biological activity</subject><subject>Embryos</subject><subject>Gene Expression</subject><subject>Light</subject><subject>Nucleic Acids</subject><subject>Oligonucleotides</subject><subject>Optical control</subject><subject>Proteins - genetics</subject><subject>Temporal resolution</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd1rFDEUxYNY2rX2xXcl0BcRpt58TGbyIpRVa2mhgvU5ZDM3u1OzkzWZKfS_b9at68dTLjm_e3LIIeQVgzMGQr_vmMsAvG5-PCMzJhVUspHyOZmBAFUBMH5EXuR8VybWKH5IjoRshAbezMjX22SHHOzYx8EG6uIwphho9HSJA1I_DW4r0XGV4rRc0bgZe2dDeKAJl1PZw44OkwvYO2pd3-WX5MDbkPHk6Twm3z9_up1_qa5vLi7n59eVk1qOFSqvbePBKr_gLdhOedQ1cMdqrlGB565FBkopEAtd7rTFRrQaS3LnvRLH5MPOdzMt1tg5LMFtMJvUr216MNH25l9l6FdmGe9NqwFAtcXg7ZNBij8nzKNZ99lhCHbAOGXDay25bmq5fev0P_QuTqn8V6FKPt1qJUWh3u0ol2LOCf0-DAOzLcp8ZPNvv4q6KvCbv-Pv0d_NFOD1DkjZ7dU_TYtHDSmZJw</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Darrah, Kristie E</creator><creator>Deiters, Alexander</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0234-9209</orcidid></search><sort><creationdate>20211129</creationdate><title>Translational control of gene function through optically regulated nucleic acids</title><author>Darrah, Kristie E ; Deiters, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological activity</topic><topic>Embryos</topic><topic>Gene Expression</topic><topic>Light</topic><topic>Nucleic Acids</topic><topic>Oligonucleotides</topic><topic>Optical control</topic><topic>Proteins - genetics</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darrah, Kristie E</creatorcontrib><creatorcontrib>Deiters, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darrah, Kristie E</au><au>Deiters, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational control of gene function through optically regulated nucleic acids</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2021-11-29</date><risdate>2021</risdate><volume>5</volume><issue>23</issue><spage>13253</spage><epage>13267</epage><pages>13253-13267</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and
in vivo
models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Gene function can be precisely controlled with light-responsive nucleic acids.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34739027</pmid><doi>10.1039/d1cs00257k</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0234-9209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-0012 |
ispartof | Chemical Society reviews, 2021-11, Vol.5 (23), p.13253-13267 |
issn | 0306-0012 1460-4744 |
language | eng |
recordid | cdi_pubmed_primary_34739027 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Biological activity Embryos Gene Expression Light Nucleic Acids Oligonucleotides Optical control Proteins - genetics Temporal resolution |
title | Translational control of gene function through optically regulated nucleic acids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20control%20of%20gene%20function%20through%20optically%20regulated%20nucleic%20acids&rft.jtitle=Chemical%20Society%20reviews&rft.au=Darrah,%20Kristie%20E&rft.date=2021-11-29&rft.volume=5&rft.issue=23&rft.spage=13253&rft.epage=13267&rft.pages=13253-13267&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/d1cs00257k&rft_dat=%3Cproquest_pubme%3E2603989643%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2603989643&rft_id=info:pmid/34739027&rfr_iscdi=true |