Loading…

Translational control of gene function through optically regulated nucleic acids

Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene f...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Society reviews 2021-11, Vol.5 (23), p.13253-13267
Main Authors: Darrah, Kristie E, Deiters, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63
cites cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63
container_end_page 13267
container_issue 23
container_start_page 13253
container_title Chemical Society reviews
container_volume 5
creator Darrah, Kristie E
Deiters, Alexander
description Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level. Gene function can be precisely controlled with light-responsive nucleic acids.
doi_str_mv 10.1039/d1cs00257k
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34739027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603989643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</originalsourceid><addsrcrecordid>eNpdkd1rFDEUxYNY2rX2xXcl0BcRpt58TGbyIpRVa2mhgvU5ZDM3u1OzkzWZKfS_b9at68dTLjm_e3LIIeQVgzMGQr_vmMsAvG5-PCMzJhVUspHyOZmBAFUBMH5EXuR8VybWKH5IjoRshAbezMjX22SHHOzYx8EG6uIwphho9HSJA1I_DW4r0XGV4rRc0bgZe2dDeKAJl1PZw44OkwvYO2pd3-WX5MDbkPHk6Twm3z9_up1_qa5vLi7n59eVk1qOFSqvbePBKr_gLdhOedQ1cMdqrlGB565FBkopEAtd7rTFRrQaS3LnvRLH5MPOdzMt1tg5LMFtMJvUr216MNH25l9l6FdmGe9NqwFAtcXg7ZNBij8nzKNZ99lhCHbAOGXDay25bmq5fev0P_QuTqn8V6FKPt1qJUWh3u0ol2LOCf0-DAOzLcp8ZPNvv4q6KvCbv-Pv0d_NFOD1DkjZ7dU_TYtHDSmZJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603989643</pqid></control><display><type>article</type><title>Translational control of gene function through optically regulated nucleic acids</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Darrah, Kristie E ; Deiters, Alexander</creator><creatorcontrib>Darrah, Kristie E ; Deiters, Alexander</creatorcontrib><description>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level. Gene function can be precisely controlled with light-responsive nucleic acids.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/d1cs00257k</identifier><identifier>PMID: 34739027</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological activity ; Embryos ; Gene Expression ; Light ; Nucleic Acids ; Oligonucleotides ; Optical control ; Proteins - genetics ; Temporal resolution</subject><ispartof>Chemical Society reviews, 2021-11, Vol.5 (23), p.13253-13267</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</citedby><cites>FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</cites><orcidid>0000-0003-0234-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Darrah, Kristie E</creatorcontrib><creatorcontrib>Deiters, Alexander</creatorcontrib><title>Translational control of gene function through optically regulated nucleic acids</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level. Gene function can be precisely controlled with light-responsive nucleic acids.</description><subject>Biological activity</subject><subject>Embryos</subject><subject>Gene Expression</subject><subject>Light</subject><subject>Nucleic Acids</subject><subject>Oligonucleotides</subject><subject>Optical control</subject><subject>Proteins - genetics</subject><subject>Temporal resolution</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd1rFDEUxYNY2rX2xXcl0BcRpt58TGbyIpRVa2mhgvU5ZDM3u1OzkzWZKfS_b9at68dTLjm_e3LIIeQVgzMGQr_vmMsAvG5-PCMzJhVUspHyOZmBAFUBMH5EXuR8VybWKH5IjoRshAbezMjX22SHHOzYx8EG6uIwphho9HSJA1I_DW4r0XGV4rRc0bgZe2dDeKAJl1PZw44OkwvYO2pd3-WX5MDbkPHk6Twm3z9_up1_qa5vLi7n59eVk1qOFSqvbePBKr_gLdhOedQ1cMdqrlGB565FBkopEAtd7rTFRrQaS3LnvRLH5MPOdzMt1tg5LMFtMJvUr216MNH25l9l6FdmGe9NqwFAtcXg7ZNBij8nzKNZ99lhCHbAOGXDay25bmq5fev0P_QuTqn8V6FKPt1qJUWh3u0ol2LOCf0-DAOzLcp8ZPNvv4q6KvCbv-Pv0d_NFOD1DkjZ7dU_TYtHDSmZJw</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Darrah, Kristie E</creator><creator>Deiters, Alexander</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0234-9209</orcidid></search><sort><creationdate>20211129</creationdate><title>Translational control of gene function through optically regulated nucleic acids</title><author>Darrah, Kristie E ; Deiters, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological activity</topic><topic>Embryos</topic><topic>Gene Expression</topic><topic>Light</topic><topic>Nucleic Acids</topic><topic>Oligonucleotides</topic><topic>Optical control</topic><topic>Proteins - genetics</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darrah, Kristie E</creatorcontrib><creatorcontrib>Deiters, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darrah, Kristie E</au><au>Deiters, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational control of gene function through optically regulated nucleic acids</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2021-11-29</date><risdate>2021</risdate><volume>5</volume><issue>23</issue><spage>13253</spage><epage>13267</epage><pages>13253-13267</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level. Gene function can be precisely controlled with light-responsive nucleic acids.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34739027</pmid><doi>10.1039/d1cs00257k</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0234-9209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-0012
ispartof Chemical Society reviews, 2021-11, Vol.5 (23), p.13253-13267
issn 0306-0012
1460-4744
language eng
recordid cdi_pubmed_primary_34739027
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Biological activity
Embryos
Gene Expression
Light
Nucleic Acids
Oligonucleotides
Optical control
Proteins - genetics
Temporal resolution
title Translational control of gene function through optically regulated nucleic acids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20control%20of%20gene%20function%20through%20optically%20regulated%20nucleic%20acids&rft.jtitle=Chemical%20Society%20reviews&rft.au=Darrah,%20Kristie%20E&rft.date=2021-11-29&rft.volume=5&rft.issue=23&rft.spage=13253&rft.epage=13267&rft.pages=13253-13267&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/d1cs00257k&rft_dat=%3Cproquest_pubme%3E2603989643%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-e6f9a7f0a6fb280ad6fe9502c1529e60f2c8e1066603b95299ae7389e473cff63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2603989643&rft_id=info:pmid/34739027&rfr_iscdi=true