Loading…

Equilibrium and hysteresis formation of water vapor adsorption on microporous adsorbents: Effect of adsorbent properties and temperature

Water vapor has been one of the vital problems in purification of volatile organic compounds. In this study, the adsorption-desorption equilibrium of water vapor were conducted at 298, 308, 318, and 328 K on three adsorbents: hypercrosslinked polymeric adsorbents (HPA), activated carbon fiber (ACF)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Air & Waste Management Association (1995) 2022-02, Vol.72 (2), p.176-186
Main Authors: Jia, Lijuan, Niu, Ben, Jing, Xiaoxia, Wu, Yangfang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water vapor has been one of the vital problems in purification of volatile organic compounds. In this study, the adsorption-desorption equilibrium of water vapor were conducted at 298, 308, 318, and 328 K on three adsorbents: hypercrosslinked polymeric adsorbents (HPA), activated carbon fiber (ACF) and granular activated carbon (GAC). The obtained isotherms were type V and the adsorption capacity at the same condition was: GAC>ACF>HPA. cluster formation induced micropore filling (CIMF) model was adopted to fit the adsorption isotherms and the fitting parameters showed that adsorption capacities of water vapor on micropores and functional groups had a negative logarithmic linear relationship with temperature. The existence of functional groups could weaken the negative influence of temperature on the water adsorption performance, while the influence of temperature had negligible relationship with microporous volume. The hysteresis loops at different temperatures on three adsorbents had similar shape, the size of which were also: GAC>ACF>HPA. They mainly occurred in micropore adsorption, but their size had positive relationships with both functional groups and microporous volume. The hysteresis became smaller along with the increase of temperature, closely related with the stability of water clusters. In conclusion, temperature, functional groups and porous structure played crucial roles for water vapor adsorption and the formation of hysteresis. Implications: Water vapor is one of the vital influence for VOCs recovery, so studying the adsorption mechanism of water vapor is important to weaken its negative effect. Adsorption capacities of water vapor on both micropores and functional groups had a negative logarithmic linear relationship with temperature. The existence of functional groups could weaken the negative influence of temperature on the water adsorption performance, while the influence of temperature had negligible relationship with microporous volume. The hysteresis loops on three adsorbents mainly occurred in micropore adsorption, but their size had positive relationships with both functional groups and microporous volume.
ISSN:1096-2247
2162-2906
DOI:10.1080/10962247.2021.2011477