Loading…

Investigating active phase loss from supported ruthenium catalysts during supercritical water gasification

Active phase loss mechanisms from Ru/AC catalysts were studied in continuous supercritical water gasification (SCWG) for the first time by analysing the Ru content in process water with low limit-of-detection time-resolved ICP-MS. Ru loss was investigated alongside the activity of commercial and in-...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis science & technology 2021-11, Vol.11 (22), p.7431-7444
Main Authors: Hunston, Christopher, Baudouin, David, Tarik, Mohamed, Kröcher, Oliver, Vogel, Frédéric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active phase loss mechanisms from Ru/AC catalysts were studied in continuous supercritical water gasification (SCWG) for the first time by analysing the Ru content in process water with low limit-of-detection time-resolved ICP-MS. Ru loss was investigated alongside the activity of commercial and in-house Ru-based catalysts, showing very low Ru loss rates compared to Ru/metal-oxides (0.2-1.2 vs. 10-24 μg g Ru −1 h −1 , respectively). Furthermore, AC-supported Ru catalysts showed superior long-term SCWG activity to their oxide-based analogues. The impact on Ru loss of several parameters relevant for catalytic SCWG (temperature, feed concentration or feed rate) was also studied and was shown to have no effect on the Ru concentration in the process water, as it systematically stabilised to 0.01-0.2 μg Ru L −1 for Ru/AC. Looking into the type of Ru loss in steady-state operation, time-resolved ICP-MS confirmed a high probability of finding Ru in the ionic form, suggesting that leaching is the main steady-state Ru loss mechanism. In non-steady-state operation, abrupt changes in the pressure and flow rate induced important Ru losses, which were assigned to catalyst fragments. This is directly linked to irreversible mechanical damage to the catalyst. Taking the different observations into consideration, the following Ru loss mechanisms are suggested: 1) constant Ru dissolution (leaching) until solubility equilibrium is reached; 2) minor nanoparticle uncoupling from the support (both at steady state); 3) support disintegration leading to the loss of larger amounts of Ru in the form of catalyst fragments (abrupt feed rate or pressure variations). The very low Ru concentrations detected in process water at steady state (0.01-0.2 μg Ru L −1 ) are close to the thermodynamic equilibrium and indicated that leaching did not contribute to Ru/AC deactivation in SCWG. Ru loss mechanisms were investigated for the first time in SCWG by ICP-MS. Ru leaching at steady state was very low, close to thermodynamic models. Abrupt changes in process conditions must be avoided to prevent catalyst damage and higher Ru loss.
ISSN:2044-4753
2044-4761
DOI:10.1039/d1cy00379h