Loading…

Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance

Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of mag...

Full description

Saved in:
Bibliographic Details
Published in:Brain computer interfaces (Abingdon, England) England), 2019-10, Vol.6 (4), p.141-148
Main Authors: Thompson, David E., Mowla, Md. Rakibul, Dhuyvetter, Katie J., Tillman, Joseph W., Huggins, Jane E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03
cites cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03
container_end_page 148
container_issue 4
container_start_page 141
container_title Brain computer interfaces (Abingdon, England)
container_volume 6
creator Thompson, David E.
Mowla, Md. Rakibul
Dhuyvetter, Katie J.
Tillman, Joseph W.
Huggins, Jane E.
description Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.
doi_str_mv 10.1080/2326263X.2020.1734401
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34988241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617273645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtRAIEPATqHLkEuqvOM6lKkKlrbRSkQBpD0iWY09YoyQOtlPEv6-3u6zKpRePPfPem_E8hM4JviRY4s-UUUEFW15STHOqZpxjsoeO1_kyl8j-7s6WR-gsxmeMMSGsYYQcoiPGGykpJ8fo8WpOftAJbKFDcp02qQjwDCY5Pxa6f_LBpdUQi5UOQ3HLirsJ-h5C0QbtxtL4YZpTfroxn5kNxZSjD4MeDZyig073Ec628QQ93Hy7v_5RLn59_3l9tSgNFzKV0JqG10w2hojKViQnLTRWao4xtBIAiBQWE2GpxW2eHDiuiWQAXVsJg9kJ-rLRneZ2AGtgTEH3agpu0OFNee3Ux8roVurJ_1ayppWQIgtcbAWCf5khJjW4aPJH9Qh-jooKUtOaCV5laLWBmuBjDNDt2hCs1uaod3PU2hy1NSfzPv074471bkUGfN0A3Ph3f68-9FYl_db70IW8ThcV-3-PP4YUoMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617273645</pqid></control><display><type>article</type><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</creator><creatorcontrib>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</creatorcontrib><description>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</description><identifier>ISSN: 2326-263X</identifier><identifier>EISSN: 2326-2621</identifier><identifier>DOI: 10.1080/2326263X.2020.1734401</identifier><identifier>PMID: 34988241</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>artifacts rejection ; Brain-computer interfaces ; P300 Speller ; physiological signals ; signal processing</subject><ispartof>Brain computer interfaces (Abingdon, England), 2019-10, Vol.6 (4), p.141-148</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</citedby><cites>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</cites><orcidid>0000-0002-1897-2743 ; 0000-0001-8709-4350 ; 0000-0001-5765-8856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34988241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, David E.</creatorcontrib><creatorcontrib>Mowla, Md. Rakibul</creatorcontrib><creatorcontrib>Dhuyvetter, Katie J.</creatorcontrib><creatorcontrib>Tillman, Joseph W.</creatorcontrib><creatorcontrib>Huggins, Jane E.</creatorcontrib><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><title>Brain computer interfaces (Abingdon, England)</title><addtitle>Brain Comput Interfaces (Abingdon)</addtitle><description>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</description><subject>artifacts rejection</subject><subject>Brain-computer interfaces</subject><subject>P300 Speller</subject><subject>physiological signals</subject><subject>signal processing</subject><issn>2326-263X</issn><issn>2326-2621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1P3DAQtRAIEPATqHLkEuqvOM6lKkKlrbRSkQBpD0iWY09YoyQOtlPEv6-3u6zKpRePPfPem_E8hM4JviRY4s-UUUEFW15STHOqZpxjsoeO1_kyl8j-7s6WR-gsxmeMMSGsYYQcoiPGGykpJ8fo8WpOftAJbKFDcp02qQjwDCY5Pxa6f_LBpdUQi5UOQ3HLirsJ-h5C0QbtxtL4YZpTfroxn5kNxZSjD4MeDZyig073Ec628QQ93Hy7v_5RLn59_3l9tSgNFzKV0JqG10w2hojKViQnLTRWao4xtBIAiBQWE2GpxW2eHDiuiWQAXVsJg9kJ-rLRneZ2AGtgTEH3agpu0OFNee3Ux8roVurJ_1ayppWQIgtcbAWCf5khJjW4aPJH9Qh-jooKUtOaCV5laLWBmuBjDNDt2hCs1uaod3PU2hy1NSfzPv074471bkUGfN0A3Ph3f68-9FYl_db70IW8ThcV-3-PP4YUoMc</recordid><startdate>20191002</startdate><enddate>20191002</enddate><creator>Thompson, David E.</creator><creator>Mowla, Md. Rakibul</creator><creator>Dhuyvetter, Katie J.</creator><creator>Tillman, Joseph W.</creator><creator>Huggins, Jane E.</creator><general>Taylor &amp; Francis</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1897-2743</orcidid><orcidid>https://orcid.org/0000-0001-8709-4350</orcidid><orcidid>https://orcid.org/0000-0001-5765-8856</orcidid></search><sort><creationdate>20191002</creationdate><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><author>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>artifacts rejection</topic><topic>Brain-computer interfaces</topic><topic>P300 Speller</topic><topic>physiological signals</topic><topic>signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, David E.</creatorcontrib><creatorcontrib>Mowla, Md. Rakibul</creatorcontrib><creatorcontrib>Dhuyvetter, Katie J.</creatorcontrib><creatorcontrib>Tillman, Joseph W.</creatorcontrib><creatorcontrib>Huggins, Jane E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain computer interfaces (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, David E.</au><au>Mowla, Md. Rakibul</au><au>Dhuyvetter, Katie J.</au><au>Tillman, Joseph W.</au><au>Huggins, Jane E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</atitle><jtitle>Brain computer interfaces (Abingdon, England)</jtitle><addtitle>Brain Comput Interfaces (Abingdon)</addtitle><date>2019-10-02</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>2326-263X</issn><eissn>2326-2621</eissn><abstract>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>34988241</pmid><doi>10.1080/2326263X.2020.1734401</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1897-2743</orcidid><orcidid>https://orcid.org/0000-0001-8709-4350</orcidid><orcidid>https://orcid.org/0000-0001-5765-8856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2326-263X
ispartof Brain computer interfaces (Abingdon, England), 2019-10, Vol.6 (4), p.141-148
issn 2326-263X
2326-2621
language eng
recordid cdi_pubmed_primary_34988241
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects artifacts rejection
Brain-computer interfaces
P300 Speller
physiological signals
signal processing
title Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20artifact%20rejection%20algorithms%20harm%20P3%20Speller%20brain-computer%20interface%20performance&rft.jtitle=Brain%20computer%20interfaces%20(Abingdon,%20England)&rft.au=Thompson,%20David%20E.&rft.date=2019-10-02&rft.volume=6&rft.issue=4&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=2326-263X&rft.eissn=2326-2621&rft_id=info:doi/10.1080/2326263X.2020.1734401&rft_dat=%3Cproquest_pubme%3E2617273645%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617273645&rft_id=info:pmid/34988241&rfr_iscdi=true