Loading…
Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance
Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of mag...
Saved in:
Published in: | Brain computer interfaces (Abingdon, England) England), 2019-10, Vol.6 (4), p.141-148 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03 |
container_end_page | 148 |
container_issue | 4 |
container_start_page | 141 |
container_title | Brain computer interfaces (Abingdon, England) |
container_volume | 6 |
creator | Thompson, David E. Mowla, Md. Rakibul Dhuyvetter, Katie J. Tillman, Joseph W. Huggins, Jane E. |
description | Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed. |
doi_str_mv | 10.1080/2326263X.2020.1734401 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34988241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617273645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</originalsourceid><addsrcrecordid>eNp9UU1P3DAQtRAIEPATqHLkEuqvOM6lKkKlrbRSkQBpD0iWY09YoyQOtlPEv6-3u6zKpRePPfPem_E8hM4JviRY4s-UUUEFW15STHOqZpxjsoeO1_kyl8j-7s6WR-gsxmeMMSGsYYQcoiPGGykpJ8fo8WpOftAJbKFDcp02qQjwDCY5Pxa6f_LBpdUQi5UOQ3HLirsJ-h5C0QbtxtL4YZpTfroxn5kNxZSjD4MeDZyig073Ec628QQ93Hy7v_5RLn59_3l9tSgNFzKV0JqG10w2hojKViQnLTRWao4xtBIAiBQWE2GpxW2eHDiuiWQAXVsJg9kJ-rLRneZ2AGtgTEH3agpu0OFNee3Ux8roVurJ_1ayppWQIgtcbAWCf5khJjW4aPJH9Qh-jooKUtOaCV5laLWBmuBjDNDt2hCs1uaod3PU2hy1NSfzPv074471bkUGfN0A3Ph3f68-9FYl_db70IW8ThcV-3-PP4YUoMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617273645</pqid></control><display><type>article</type><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</creator><creatorcontrib>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</creatorcontrib><description>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</description><identifier>ISSN: 2326-263X</identifier><identifier>EISSN: 2326-2621</identifier><identifier>DOI: 10.1080/2326263X.2020.1734401</identifier><identifier>PMID: 34988241</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>artifacts rejection ; Brain-computer interfaces ; P300 Speller ; physiological signals ; signal processing</subject><ispartof>Brain computer interfaces (Abingdon, England), 2019-10, Vol.6 (4), p.141-148</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</citedby><cites>FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</cites><orcidid>0000-0002-1897-2743 ; 0000-0001-8709-4350 ; 0000-0001-5765-8856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34988241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, David E.</creatorcontrib><creatorcontrib>Mowla, Md. Rakibul</creatorcontrib><creatorcontrib>Dhuyvetter, Katie J.</creatorcontrib><creatorcontrib>Tillman, Joseph W.</creatorcontrib><creatorcontrib>Huggins, Jane E.</creatorcontrib><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><title>Brain computer interfaces (Abingdon, England)</title><addtitle>Brain Comput Interfaces (Abingdon)</addtitle><description>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</description><subject>artifacts rejection</subject><subject>Brain-computer interfaces</subject><subject>P300 Speller</subject><subject>physiological signals</subject><subject>signal processing</subject><issn>2326-263X</issn><issn>2326-2621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1P3DAQtRAIEPATqHLkEuqvOM6lKkKlrbRSkQBpD0iWY09YoyQOtlPEv6-3u6zKpRePPfPem_E8hM4JviRY4s-UUUEFW15STHOqZpxjsoeO1_kyl8j-7s6WR-gsxmeMMSGsYYQcoiPGGykpJ8fo8WpOftAJbKFDcp02qQjwDCY5Pxa6f_LBpdUQi5UOQ3HLirsJ-h5C0QbtxtL4YZpTfroxn5kNxZSjD4MeDZyig073Ec628QQ93Hy7v_5RLn59_3l9tSgNFzKV0JqG10w2hojKViQnLTRWao4xtBIAiBQWE2GpxW2eHDiuiWQAXVsJg9kJ-rLRneZ2AGtgTEH3agpu0OFNee3Ux8roVurJ_1ayppWQIgtcbAWCf5khJjW4aPJH9Qh-jooKUtOaCV5laLWBmuBjDNDt2hCs1uaod3PU2hy1NSfzPv074471bkUGfN0A3Ph3f68-9FYl_db70IW8ThcV-3-PP4YUoMc</recordid><startdate>20191002</startdate><enddate>20191002</enddate><creator>Thompson, David E.</creator><creator>Mowla, Md. Rakibul</creator><creator>Dhuyvetter, Katie J.</creator><creator>Tillman, Joseph W.</creator><creator>Huggins, Jane E.</creator><general>Taylor & Francis</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1897-2743</orcidid><orcidid>https://orcid.org/0000-0001-8709-4350</orcidid><orcidid>https://orcid.org/0000-0001-5765-8856</orcidid></search><sort><creationdate>20191002</creationdate><title>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</title><author>Thompson, David E. ; Mowla, Md. Rakibul ; Dhuyvetter, Katie J. ; Tillman, Joseph W. ; Huggins, Jane E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>artifacts rejection</topic><topic>Brain-computer interfaces</topic><topic>P300 Speller</topic><topic>physiological signals</topic><topic>signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, David E.</creatorcontrib><creatorcontrib>Mowla, Md. Rakibul</creatorcontrib><creatorcontrib>Dhuyvetter, Katie J.</creatorcontrib><creatorcontrib>Tillman, Joseph W.</creatorcontrib><creatorcontrib>Huggins, Jane E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain computer interfaces (Abingdon, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, David E.</au><au>Mowla, Md. Rakibul</au><au>Dhuyvetter, Katie J.</au><au>Tillman, Joseph W.</au><au>Huggins, Jane E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance</atitle><jtitle>Brain computer interfaces (Abingdon, England)</jtitle><addtitle>Brain Comput Interfaces (Abingdon)</addtitle><date>2019-10-02</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>2326-263X</issn><eissn>2326-2621</eissn><abstract>Brain-Computer Interfaces (BCIs) have been used to restore communication and control to people with severe paralysis. However, noninvasive BCIs based on electroencephalogram (EEG) are particularly vulnerable to noise artifacts. These artifacts, including electro-oculogram (EOG), can be orders of magnitude larger than the signal to be detected. Many automated methods have been proposed to remove EOG and other artifacts from EEG recordings, most based on blind source separation. This work presents a performance comparison of ten different automated artifact removal methods. Unfortunately, all tested methods substantially and significantly reduced P3 Speller BCI performance, and all methods were more likely to reduce performance than increase it. The least harmful methods were titled SOBI, JADER, and EFICA, but even these methods caused an average of approximately ten percentage points drop in BCI accuracy. Possible mechanistic causes for this empirical performance reduction are proposed.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>34988241</pmid><doi>10.1080/2326263X.2020.1734401</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1897-2743</orcidid><orcidid>https://orcid.org/0000-0001-8709-4350</orcidid><orcidid>https://orcid.org/0000-0001-5765-8856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2326-263X |
ispartof | Brain computer interfaces (Abingdon, England), 2019-10, Vol.6 (4), p.141-148 |
issn | 2326-263X 2326-2621 |
language | eng |
recordid | cdi_pubmed_primary_34988241 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | artifacts rejection Brain-computer interfaces P300 Speller physiological signals signal processing |
title | Automated artifact rejection algorithms harm P3 Speller brain-computer interface performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20artifact%20rejection%20algorithms%20harm%20P3%20Speller%20brain-computer%20interface%20performance&rft.jtitle=Brain%20computer%20interfaces%20(Abingdon,%20England)&rft.au=Thompson,%20David%20E.&rft.date=2019-10-02&rft.volume=6&rft.issue=4&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=2326-263X&rft.eissn=2326-2621&rft_id=info:doi/10.1080/2326263X.2020.1734401&rft_dat=%3Cproquest_pubme%3E2617273645%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-ebc947389c165d51468de9d8a400eb8eee186d016d2d0b988e407183eefb56c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617273645&rft_id=info:pmid/34988241&rfr_iscdi=true |