Loading…
Passive near-field imaging via grating-based spectroscopy
Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanos...
Saved in:
Published in: | Review of scientific instruments 2022-01, Vol.93 (1), p.013704-013704 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73 |
container_end_page | 013704 |
container_issue | 1 |
container_start_page | 013704 |
container_title | Review of scientific instruments |
container_volume | 93 |
creator | Sakuma, R. Lin, K.-T. Kim, S. Kimura, F. Kajihara, Y. |
description | Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanoscale Joule heating. However, the lack of a wavelength selection mechanism in the passive LWIR s-SNOM makes it difficult to perform a thorough analysis of the surface-localized waves. Here, we develop a novel passive scanning near-field optical spectroscopy with a diffraction grating. The spectroscopic optics are designed to exhibit a high signal efficiency and mechanical performance at the temperature of liquid helium (4.2 K). Using the developed passive LWIR near-field spectroscopy, the spectral information of thermally excited evanescent waves can be directly obtained without any influence from the external environment factors, including environmental heat. We have detected the thermally excited evanescent waves on a SiC/Au micropatterned sample at room temperature with a spatial resolution of 200 nm and a wavelength resolution of 500 nm at several wavelengths in the range of 14–15 µm. The obtained spectra are consistent with the electromagnetic local density of states calculated based on the fluctuation–dissipation theorem. The developed passive LWIR near-field spectroscopy enables the spectral analysis of ultrasmall surface-localized waves, making it a high-performance surface analysis tool. |
doi_str_mv | 10.1063/5.0059498 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35104953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624948298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDqb_cjuUYpfUNCDnsMmOykpaRJ3k0L_vVtaFQSdy87h4WXnJeScwpSCZLdiCiA01-qAjCkoHacyYYdkDMB4LFOuRuTE-yWEEZQekxETFLgWbEz0q_G-WmPUoHFxWWFto2plFlWziNaViRbO9GGPc-PRRr7DonetL9puc0qOSlN7PNu_E_L-cP82e4rnL4_Ps7t5XHCu-zgxOs9zVJArwXIsJAeBmiZg0XIuCo2CWZA5VTJViWUcURqeSAkUlbApm5CrXW7n2o8BfZ-tKl9gXZsG28FniUy45irRKtDLX3TZDq4Jv9sqUEox2AZe71QRLvEOy6xz4WS3yShk2z4zke37DPZinzjkK7Tf8qvAAG52wBdVH6pqm3_T_sTr1v3ArLMl-wRQvonO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620888307</pqid></control><display><type>article</type><title>Passive near-field imaging via grating-based spectroscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Sakuma, R. ; Lin, K.-T. ; Kim, S. ; Kimura, F. ; Kajihara, Y.</creator><creatorcontrib>Sakuma, R. ; Lin, K.-T. ; Kim, S. ; Kimura, F. ; Kajihara, Y.</creatorcontrib><description>Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanoscale Joule heating. However, the lack of a wavelength selection mechanism in the passive LWIR s-SNOM makes it difficult to perform a thorough analysis of the surface-localized waves. Here, we develop a novel passive scanning near-field optical spectroscopy with a diffraction grating. The spectroscopic optics are designed to exhibit a high signal efficiency and mechanical performance at the temperature of liquid helium (4.2 K). Using the developed passive LWIR near-field spectroscopy, the spectral information of thermally excited evanescent waves can be directly obtained without any influence from the external environment factors, including environmental heat. We have detected the thermally excited evanescent waves on a SiC/Au micropatterned sample at room temperature with a spatial resolution of 200 nm and a wavelength resolution of 500 nm at several wavelengths in the range of 14–15 µm. The obtained spectra are consistent with the electromagnetic local density of states calculated based on the fluctuation–dissipation theorem. The developed passive LWIR near-field spectroscopy enables the spectral analysis of ultrasmall surface-localized waves, making it a high-performance surface analysis tool.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0059498</identifier><identifier>PMID: 35104953</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Electron energy ; Energy dissipation ; Evanescent waves ; Gratings (spectra) ; Liquid helium ; Mechanical properties ; Micropatterning ; Near fields ; Ohmic dissipation ; Optical microscopy ; Passive imaging ; Resistance heating ; Room temperature ; Scientific apparatus & instruments ; Spatial resolution ; Spectra ; Spectrum analysis ; Surface analysis (chemical)</subject><ispartof>Review of scientific instruments, 2022-01, Vol.93 (1), p.013704-013704</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73</citedby><cites>FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73</cites><orcidid>0000-0002-9989-1004 ; s0000000299891004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0059498$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35104953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakuma, R.</creatorcontrib><creatorcontrib>Lin, K.-T.</creatorcontrib><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Kimura, F.</creatorcontrib><creatorcontrib>Kajihara, Y.</creatorcontrib><title>Passive near-field imaging via grating-based spectroscopy</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanoscale Joule heating. However, the lack of a wavelength selection mechanism in the passive LWIR s-SNOM makes it difficult to perform a thorough analysis of the surface-localized waves. Here, we develop a novel passive scanning near-field optical spectroscopy with a diffraction grating. The spectroscopic optics are designed to exhibit a high signal efficiency and mechanical performance at the temperature of liquid helium (4.2 K). Using the developed passive LWIR near-field spectroscopy, the spectral information of thermally excited evanescent waves can be directly obtained without any influence from the external environment factors, including environmental heat. We have detected the thermally excited evanescent waves on a SiC/Au micropatterned sample at room temperature with a spatial resolution of 200 nm and a wavelength resolution of 500 nm at several wavelengths in the range of 14–15 µm. The obtained spectra are consistent with the electromagnetic local density of states calculated based on the fluctuation–dissipation theorem. The developed passive LWIR near-field spectroscopy enables the spectral analysis of ultrasmall surface-localized waves, making it a high-performance surface analysis tool.</description><subject>Electron energy</subject><subject>Energy dissipation</subject><subject>Evanescent waves</subject><subject>Gratings (spectra)</subject><subject>Liquid helium</subject><subject>Mechanical properties</subject><subject>Micropatterning</subject><subject>Near fields</subject><subject>Ohmic dissipation</subject><subject>Optical microscopy</subject><subject>Passive imaging</subject><subject>Resistance heating</subject><subject>Room temperature</subject><subject>Scientific apparatus & instruments</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Surface analysis (chemical)</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFFurB_-ABLyokDqb_cjuUYpfUNCDnsMmOykpaRJ3k0L_vVtaFQSdy87h4WXnJeScwpSCZLdiCiA01-qAjCkoHacyYYdkDMB4LFOuRuTE-yWEEZQekxETFLgWbEz0q_G-WmPUoHFxWWFto2plFlWziNaViRbO9GGPc-PRRr7DonetL9puc0qOSlN7PNu_E_L-cP82e4rnL4_Ps7t5XHCu-zgxOs9zVJArwXIsJAeBmiZg0XIuCo2CWZA5VTJViWUcURqeSAkUlbApm5CrXW7n2o8BfZ-tKl9gXZsG28FniUy45irRKtDLX3TZDq4Jv9sqUEox2AZe71QRLvEOy6xz4WS3yShk2z4zke37DPZinzjkK7Tf8qvAAG52wBdVH6pqm3_T_sTr1v3ArLMl-wRQvonO</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Sakuma, R.</creator><creator>Lin, K.-T.</creator><creator>Kim, S.</creator><creator>Kimura, F.</creator><creator>Kajihara, Y.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9989-1004</orcidid><orcidid>https://orcid.org/s0000000299891004</orcidid></search><sort><creationdate>20220101</creationdate><title>Passive near-field imaging via grating-based spectroscopy</title><author>Sakuma, R. ; Lin, K.-T. ; Kim, S. ; Kimura, F. ; Kajihara, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electron energy</topic><topic>Energy dissipation</topic><topic>Evanescent waves</topic><topic>Gratings (spectra)</topic><topic>Liquid helium</topic><topic>Mechanical properties</topic><topic>Micropatterning</topic><topic>Near fields</topic><topic>Ohmic dissipation</topic><topic>Optical microscopy</topic><topic>Passive imaging</topic><topic>Resistance heating</topic><topic>Room temperature</topic><topic>Scientific apparatus & instruments</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Surface analysis (chemical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, R.</creatorcontrib><creatorcontrib>Lin, K.-T.</creatorcontrib><creatorcontrib>Kim, S.</creatorcontrib><creatorcontrib>Kimura, F.</creatorcontrib><creatorcontrib>Kajihara, Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, R.</au><au>Lin, K.-T.</au><au>Kim, S.</au><au>Kimura, F.</au><au>Kajihara, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive near-field imaging via grating-based spectroscopy</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>93</volume><issue>1</issue><spage>013704</spage><epage>013704</epage><pages>013704-013704</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Passive scattering-type scanning near-field optical microscopy (s-SNOM) has recently been developed for studying long-wavelength infrared (LWIR) waves. It detects surface-localized waves without any external illumination or heating and enables the imaging of hot-electron energy dissipation and nanoscale Joule heating. However, the lack of a wavelength selection mechanism in the passive LWIR s-SNOM makes it difficult to perform a thorough analysis of the surface-localized waves. Here, we develop a novel passive scanning near-field optical spectroscopy with a diffraction grating. The spectroscopic optics are designed to exhibit a high signal efficiency and mechanical performance at the temperature of liquid helium (4.2 K). Using the developed passive LWIR near-field spectroscopy, the spectral information of thermally excited evanescent waves can be directly obtained without any influence from the external environment factors, including environmental heat. We have detected the thermally excited evanescent waves on a SiC/Au micropatterned sample at room temperature with a spatial resolution of 200 nm and a wavelength resolution of 500 nm at several wavelengths in the range of 14–15 µm. The obtained spectra are consistent with the electromagnetic local density of states calculated based on the fluctuation–dissipation theorem. The developed passive LWIR near-field spectroscopy enables the spectral analysis of ultrasmall surface-localized waves, making it a high-performance surface analysis tool.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35104953</pmid><doi>10.1063/5.0059498</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9989-1004</orcidid><orcidid>https://orcid.org/s0000000299891004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2022-01, Vol.93 (1), p.013704-013704 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_pubmed_primary_35104953 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Electron energy Energy dissipation Evanescent waves Gratings (spectra) Liquid helium Mechanical properties Micropatterning Near fields Ohmic dissipation Optical microscopy Passive imaging Resistance heating Room temperature Scientific apparatus & instruments Spatial resolution Spectra Spectrum analysis Surface analysis (chemical) |
title | Passive near-field imaging via grating-based spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20near-field%20imaging%20via%20grating-based%20spectroscopy&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Sakuma,%20R.&rft.date=2022-01-01&rft.volume=93&rft.issue=1&rft.spage=013704&rft.epage=013704&rft.pages=013704-013704&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0059498&rft_dat=%3Cproquest_pubme%3E2624948298%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-2a9bbbe80b853bec6405e9120ded445c9e53d06b186782d34ee6a426601e85d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620888307&rft_id=info:pmid/35104953&rfr_iscdi=true |