Loading…

A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water

We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluct...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-01, Vol.156 (4), p.044506-044506
Main Authors: Zanetti-Polzi, Laura, Daidone, Isabella, Amadei, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3
cites cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3
container_end_page 044506
container_issue 4
container_start_page 044506
container_title The Journal of chemical physics
container_volume 156
creator Zanetti-Polzi, Laura
Daidone, Isabella
Amadei, Andrea
description We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.
doi_str_mv 10.1063/5.0079206
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35105084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624949068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</originalsourceid><addsrcrecordid>eNp90VFL3TAUB_AwJvPq9uAXkMBe5qDuJGmbZm8X0SkIvuhzSdOTGWmbmqSO--3Xa-8cKPiUA_nxT_gfQo4YnDIoxY_iFEAqDuUHsmJQqUyWCj6SFQBnmSqh3CcHMT4AAJM8_0T2RcGggCpfkbSmv3HAoDsak04uJmfmuUdzr4dl9C121PpAbTe5lsZNTNjTdI9hvtoMuncm_qTrcexmn5wfaPI0Tk1G9TDzacSQmeCW4D86YfhM9qzuIn7ZnYfk7uL89uwyu775dXW2vs6MqETKFFcyr1AwzA1HxpqGCS4aLq1oCgQGVhUlmKaooOWorGVSKlshtkZyCSgOybcldwz-ccKY6t5Fg12nB_RTrHnJc5UrKKuZfn1FH_wUhvl3z2rbnNiqk0WZ4GMMaOsxuF6HTc2g3q6iLurdKmZ7vEucmh7bF_mv-xl8X0A0Lj0X92KefPifVI-tfQ-_ffov8QifnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624001738</pqid></control><display><type>article</type><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</creator><creatorcontrib>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</creatorcontrib><description>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0079206</identifier><identifier>PMID: 35105084</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Critical point ; Equations of state ; Free energy ; Hydrogen bonding ; Phase transitions ; Physics ; Subsystems ; Thermodynamics ; Vapor phases</subject><ispartof>The Journal of chemical physics, 2022-01, Vol.156 (4), p.044506-044506</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</citedby><cites>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</cites><orcidid>0000-0002-2550-4796 ; 0000-0001-8970-8408 ; 0000-0001-9488-0536 ; s0000000225504796 ; s0000000189708408 ; s0000000194880536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0079206$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76129</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35105084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanetti-Polzi, Laura</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</description><subject>Critical point</subject><subject>Equations of state</subject><subject>Free energy</subject><subject>Hydrogen bonding</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Subsystems</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90VFL3TAUB_AwJvPq9uAXkMBe5qDuJGmbZm8X0SkIvuhzSdOTGWmbmqSO--3Xa-8cKPiUA_nxT_gfQo4YnDIoxY_iFEAqDuUHsmJQqUyWCj6SFQBnmSqh3CcHMT4AAJM8_0T2RcGggCpfkbSmv3HAoDsak04uJmfmuUdzr4dl9C121PpAbTe5lsZNTNjTdI9hvtoMuncm_qTrcexmn5wfaPI0Tk1G9TDzacSQmeCW4D86YfhM9qzuIn7ZnYfk7uL89uwyu775dXW2vs6MqETKFFcyr1AwzA1HxpqGCS4aLq1oCgQGVhUlmKaooOWorGVSKlshtkZyCSgOybcldwz-ccKY6t5Fg12nB_RTrHnJc5UrKKuZfn1FH_wUhvl3z2rbnNiqk0WZ4GMMaOsxuF6HTc2g3q6iLurdKmZ7vEucmh7bF_mv-xl8X0A0Lj0X92KefPifVI-tfQ-_ffov8QifnQ</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Zanetti-Polzi, Laura</creator><creator>Daidone, Isabella</creator><creator>Amadei, Andrea</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2550-4796</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid><orcidid>https://orcid.org/s0000000225504796</orcidid><orcidid>https://orcid.org/s0000000189708408</orcidid><orcidid>https://orcid.org/s0000000194880536</orcidid></search><sort><creationdate>20220128</creationdate><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><author>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical point</topic><topic>Equations of state</topic><topic>Free energy</topic><topic>Hydrogen bonding</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Subsystems</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanetti-Polzi, Laura</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanetti-Polzi, Laura</au><au>Daidone, Isabella</au><au>Amadei, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-01-28</date><risdate>2022</risdate><volume>156</volume><issue>4</issue><spage>044506</spage><epage>044506</epage><pages>044506-044506</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35105084</pmid><doi>10.1063/5.0079206</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2550-4796</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid><orcidid>https://orcid.org/s0000000225504796</orcidid><orcidid>https://orcid.org/s0000000189708408</orcidid><orcidid>https://orcid.org/s0000000194880536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-01, Vol.156 (4), p.044506-044506
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_35105084
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Critical point
Equations of state
Free energy
Hydrogen bonding
Phase transitions
Physics
Subsystems
Thermodynamics
Vapor phases
title A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20statistical%20mechanical%20model%20for%20fluid%20system%20thermodynamics:%20Application%20to%20sub-%20and%20super-critical%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zanetti-Polzi,%20Laura&rft.date=2022-01-28&rft.volume=156&rft.issue=4&rft.spage=044506&rft.epage=044506&rft.pages=044506-044506&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0079206&rft_dat=%3Cproquest_pubme%3E2624949068%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624001738&rft_id=info:pmid/35105084&rfr_iscdi=true