Loading…
A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water
We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluct...
Saved in:
Published in: | The Journal of chemical physics 2022-01, Vol.156 (4), p.044506-044506 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3 |
container_end_page | 044506 |
container_issue | 4 |
container_start_page | 044506 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Zanetti-Polzi, Laura Daidone, Isabella Amadei, Andrea |
description | We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network. |
doi_str_mv | 10.1063/5.0079206 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35105084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624949068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</originalsourceid><addsrcrecordid>eNp90VFL3TAUB_AwJvPq9uAXkMBe5qDuJGmbZm8X0SkIvuhzSdOTGWmbmqSO--3Xa-8cKPiUA_nxT_gfQo4YnDIoxY_iFEAqDuUHsmJQqUyWCj6SFQBnmSqh3CcHMT4AAJM8_0T2RcGggCpfkbSmv3HAoDsak04uJmfmuUdzr4dl9C121PpAbTe5lsZNTNjTdI9hvtoMuncm_qTrcexmn5wfaPI0Tk1G9TDzacSQmeCW4D86YfhM9qzuIn7ZnYfk7uL89uwyu775dXW2vs6MqETKFFcyr1AwzA1HxpqGCS4aLq1oCgQGVhUlmKaooOWorGVSKlshtkZyCSgOybcldwz-ccKY6t5Fg12nB_RTrHnJc5UrKKuZfn1FH_wUhvl3z2rbnNiqk0WZ4GMMaOsxuF6HTc2g3q6iLurdKmZ7vEucmh7bF_mv-xl8X0A0Lj0X92KefPifVI-tfQ-_ffov8QifnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624001738</pqid></control><display><type>article</type><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</creator><creatorcontrib>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</creatorcontrib><description>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0079206</identifier><identifier>PMID: 35105084</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Critical point ; Equations of state ; Free energy ; Hydrogen bonding ; Phase transitions ; Physics ; Subsystems ; Thermodynamics ; Vapor phases</subject><ispartof>The Journal of chemical physics, 2022-01, Vol.156 (4), p.044506-044506</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</citedby><cites>FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</cites><orcidid>0000-0002-2550-4796 ; 0000-0001-8970-8408 ; 0000-0001-9488-0536 ; s0000000225504796 ; s0000000189708408 ; s0000000194880536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0079206$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76129</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35105084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanetti-Polzi, Laura</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</description><subject>Critical point</subject><subject>Equations of state</subject><subject>Free energy</subject><subject>Hydrogen bonding</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Subsystems</subject><subject>Thermodynamics</subject><subject>Vapor phases</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90VFL3TAUB_AwJvPq9uAXkMBe5qDuJGmbZm8X0SkIvuhzSdOTGWmbmqSO--3Xa-8cKPiUA_nxT_gfQo4YnDIoxY_iFEAqDuUHsmJQqUyWCj6SFQBnmSqh3CcHMT4AAJM8_0T2RcGggCpfkbSmv3HAoDsak04uJmfmuUdzr4dl9C121PpAbTe5lsZNTNjTdI9hvtoMuncm_qTrcexmn5wfaPI0Tk1G9TDzacSQmeCW4D86YfhM9qzuIn7ZnYfk7uL89uwyu775dXW2vs6MqETKFFcyr1AwzA1HxpqGCS4aLq1oCgQGVhUlmKaooOWorGVSKlshtkZyCSgOybcldwz-ccKY6t5Fg12nB_RTrHnJc5UrKKuZfn1FH_wUhvl3z2rbnNiqk0WZ4GMMaOsxuF6HTc2g3q6iLurdKmZ7vEucmh7bF_mv-xl8X0A0Lj0X92KefPifVI-tfQ-_ffov8QifnQ</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Zanetti-Polzi, Laura</creator><creator>Daidone, Isabella</creator><creator>Amadei, Andrea</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2550-4796</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid><orcidid>https://orcid.org/s0000000225504796</orcidid><orcidid>https://orcid.org/s0000000189708408</orcidid><orcidid>https://orcid.org/s0000000194880536</orcidid></search><sort><creationdate>20220128</creationdate><title>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</title><author>Zanetti-Polzi, Laura ; Daidone, Isabella ; Amadei, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Critical point</topic><topic>Equations of state</topic><topic>Free energy</topic><topic>Hydrogen bonding</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Subsystems</topic><topic>Thermodynamics</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanetti-Polzi, Laura</creatorcontrib><creatorcontrib>Daidone, Isabella</creatorcontrib><creatorcontrib>Amadei, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanetti-Polzi, Laura</au><au>Daidone, Isabella</au><au>Amadei, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-01-28</date><risdate>2022</risdate><volume>156</volume><issue>4</issue><spage>044506</spage><epage>044506</epage><pages>044506-044506</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We propose in this paper a theoretical model for fluid state thermodynamics based on modeling the fluctuation distributions and, hence, the corresponding moment generating functions providing the free energy of the system. Using the relatively simple and physically coherent gamma model for the fluctuation distributions, we obtain a complete theoretical equation of state, also giving insight into the statistical/molecular organization and phase or pseudo-phase transitions occurring under the sub- and super-critical conditions, respectively. Application to sub- and super-critical fluid water and a comparison with the experimental data show that this model provides an accurate description of fluid water thermodynamics, except close to the critical point region where limited but significant deviations from the experimental data occur. We obtain quantitative evidence of the correspondence between the sub- and super-critical thermodynamic behaviors, with the super-critical water pseudo-liquid and pseudo-gas phases being the evolution of the sub-critical water liquid and gas phases, respectively. Remarkably, according to our model, we find that for fluid water the minimal subsystem corresponding to either the liquid-like or the gas-like condition includes an infinite number of molecules in the sub-critical regime (providing the expected singularities due to macroscopic phase transitions) but only five molecules in the super-critical regime (coinciding with the minimal possible hydrogen-bonding cluster), thus suggesting that the super-critical regime be characterized by the coexistence of nanoscopic subsystems in either the pseudo-liquid or the pseudo-gas phase with each subsystem fluctuating between forming and disrupting the minimal hydrogen-bonding network.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35105084</pmid><doi>10.1063/5.0079206</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2550-4796</orcidid><orcidid>https://orcid.org/0000-0001-8970-8408</orcidid><orcidid>https://orcid.org/0000-0001-9488-0536</orcidid><orcidid>https://orcid.org/s0000000225504796</orcidid><orcidid>https://orcid.org/s0000000189708408</orcidid><orcidid>https://orcid.org/s0000000194880536</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-01, Vol.156 (4), p.044506-044506 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_35105084 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Critical point Equations of state Free energy Hydrogen bonding Phase transitions Physics Subsystems Thermodynamics Vapor phases |
title | A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20statistical%20mechanical%20model%20for%20fluid%20system%20thermodynamics:%20Application%20to%20sub-%20and%20super-critical%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zanetti-Polzi,%20Laura&rft.date=2022-01-28&rft.volume=156&rft.issue=4&rft.spage=044506&rft.epage=044506&rft.pages=044506-044506&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0079206&rft_dat=%3Cproquest_pubme%3E2624949068%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-929748e31e4c2e11bb1323b27f3b5e010f9560cb580d2e9ff1779f8eedc7270e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624001738&rft_id=info:pmid/35105084&rfr_iscdi=true |