Loading…

Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables

Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearab...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2023, Vol.26 (1), p.1-11
Main Authors: McCabe, Megan V., Van Citters, Douglas W., Chapman, Ryan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3
cites cdi_FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3
container_end_page 11
container_issue 1
container_start_page 1
container_title Computer methods in biomechanics and biomedical engineering
container_volume 26
creator McCabe, Megan V.
Van Citters, Douglas W.
Chapman, Ryan M.
description Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R 2 =0.85 across outputs, subjects and training rounds.
doi_str_mv 10.1080/10255842.2022.2044028
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35238719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756860684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wE0CRuHBJ8VcS7w1UKCBV4gJnaxyP22wde2snrPbfY2u3HDhwmdcaP-_YmpeQN4xeMaroB0Z51ynJrzjltUhJuXpGzpkc-lbxbvO8nAvTVuiMXOS8pZQqpuRLciY6LtTANuckf8bf6ONuCncNNDMu99E2LqbmcYWwTO5QL-6nXbONU1gaCHcecxHbzHHGsOTGrqkye_APVddca8A1gS-y7GN6OBr2CAlMsb8iLxz4jK9Pekl-3Xz5ef2tvf3x9fv1p9t2lJItbW-wQ2N7s0FjDIJwGyoAQTlEOzCBKGg_GOGcYUIMDEZjSx-wNISxo7gk749zdyk-rpgXPU95RO8hYFyz5r3o5CAElQV99w-6jWsK5XeaD12vetqrSnVHakwx54RO79I0QzpoRnVNRT-lomsq-pRK8b09TV_NjPav6ymGAnw8AlMou5-hLM1bvcDBx-QShHHKWvz_jT-qx59S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756860684</pqid></control><display><type>article</type><title>Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>McCabe, Megan V. ; Van Citters, Douglas W. ; Chapman, Ryan M.</creator><creatorcontrib>McCabe, Megan V. ; Van Citters, Douglas W. ; Chapman, Ryan M.</creatorcontrib><description>Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R 2 =0.85 across outputs, subjects and training rounds.</description><identifier>ISSN: 1025-5842</identifier><identifier>EISSN: 1476-8259</identifier><identifier>DOI: 10.1080/10255842.2022.2044028</identifier><identifier>PMID: 35238719</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Artificial neural networks ; Biomechanical Phenomena ; Data capture ; Gait ; Hip ; Hip Joint ; Humans ; inertial measurement units ; Inertial platforms ; Insoles ; instrumented insoles ; Knee Joint ; Neural networks ; Neural Networks, Computer ; Walking ; wearable ; Wearable Electronic Devices</subject><ispartof>Computer methods in biomechanics and biomedical engineering, 2023, Vol.26 (1), p.1-11</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3</citedby><cites>FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35238719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCabe, Megan V.</creatorcontrib><creatorcontrib>Van Citters, Douglas W.</creatorcontrib><creatorcontrib>Chapman, Ryan M.</creatorcontrib><title>Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables</title><title>Computer methods in biomechanics and biomedical engineering</title><addtitle>Comput Methods Biomech Biomed Engin</addtitle><description>Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R 2 =0.85 across outputs, subjects and training rounds.</description><subject>Artificial neural networks</subject><subject>Biomechanical Phenomena</subject><subject>Data capture</subject><subject>Gait</subject><subject>Hip</subject><subject>Hip Joint</subject><subject>Humans</subject><subject>inertial measurement units</subject><subject>Inertial platforms</subject><subject>Insoles</subject><subject>instrumented insoles</subject><subject>Knee Joint</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Walking</subject><subject>wearable</subject><subject>Wearable Electronic Devices</subject><issn>1025-5842</issn><issn>1476-8259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eoh_wE0CRuHBJ8VcS7w1UKCBV4gJnaxyP22wde2snrPbfY2u3HDhwmdcaP-_YmpeQN4xeMaroB0Z51ynJrzjltUhJuXpGzpkc-lbxbvO8nAvTVuiMXOS8pZQqpuRLciY6LtTANuckf8bf6ONuCncNNDMu99E2LqbmcYWwTO5QL-6nXbONU1gaCHcecxHbzHHGsOTGrqkye_APVddca8A1gS-y7GN6OBr2CAlMsb8iLxz4jK9Pekl-3Xz5ef2tvf3x9fv1p9t2lJItbW-wQ2N7s0FjDIJwGyoAQTlEOzCBKGg_GOGcYUIMDEZjSx-wNISxo7gk749zdyk-rpgXPU95RO8hYFyz5r3o5CAElQV99w-6jWsK5XeaD12vetqrSnVHakwx54RO79I0QzpoRnVNRT-lomsq-pRK8b09TV_NjPav6ymGAnw8AlMou5-hLM1bvcDBx-QShHHKWvz_jT-qx59S</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>McCabe, Megan V.</creator><creator>Van Citters, Douglas W.</creator><creator>Chapman, Ryan M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2023</creationdate><title>Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables</title><author>McCabe, Megan V. ; Van Citters, Douglas W. ; Chapman, Ryan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Biomechanical Phenomena</topic><topic>Data capture</topic><topic>Gait</topic><topic>Hip</topic><topic>Hip Joint</topic><topic>Humans</topic><topic>inertial measurement units</topic><topic>Inertial platforms</topic><topic>Insoles</topic><topic>instrumented insoles</topic><topic>Knee Joint</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Walking</topic><topic>wearable</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCabe, Megan V.</creatorcontrib><creatorcontrib>Van Citters, Douglas W.</creatorcontrib><creatorcontrib>Chapman, Ryan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCabe, Megan V.</au><au>Van Citters, Douglas W.</au><au>Chapman, Ryan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables</atitle><jtitle>Computer methods in biomechanics and biomedical engineering</jtitle><addtitle>Comput Methods Biomech Biomed Engin</addtitle><date>2023</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1025-5842</issn><eissn>1476-8259</eissn><abstract>Quantifying hip angles/moments during gait is critical for improving hip pathology diagnostic and treatment methods. Recent work has validated approaches combining wearables with artificial neural networks (ANNs) for cheaper, portable hip joint angle/moment computation. This study developed a Wearable-ANN approach for calculating hip joint angles/moments during walking in the sagittal/frontal planes with data from 17 healthy subjects, leveraging one shin-mounted inertial measurement unit (IMU) and a force-measuring insole for data capture. Compared to the benchmark approach, a two hidden layer ANN (n = 5 nodes per layer) achieved an average rRMSE = 15% and R 2 =0.85 across outputs, subjects and training rounds.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35238719</pmid><doi>10.1080/10255842.2022.2044028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1025-5842
ispartof Computer methods in biomechanics and biomedical engineering, 2023, Vol.26 (1), p.1-11
issn 1025-5842
1476-8259
language eng
recordid cdi_pubmed_primary_35238719
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Artificial neural networks
Biomechanical Phenomena
Data capture
Gait
Hip
Hip Joint
Humans
inertial measurement units
Inertial platforms
Insoles
instrumented insoles
Knee Joint
Neural networks
Neural Networks, Computer
Walking
wearable
Wearable Electronic Devices
title Developing a method for quantifying hip joint angles and moments during walking using neural networks and wearables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T15%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20method%20for%20quantifying%20hip%20joint%20angles%20and%20moments%20during%20walking%20using%20neural%20networks%20and%20wearables&rft.jtitle=Computer%20methods%20in%20biomechanics%20and%20biomedical%20engineering&rft.au=McCabe,%20Megan%20V.&rft.date=2023&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1025-5842&rft.eissn=1476-8259&rft_id=info:doi/10.1080/10255842.2022.2044028&rft_dat=%3Cproquest_pubme%3E2756860684%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-6be5ebd6b9ebbbea3f903aea8feed713ee3067b3ffb13371acbdd71aeffb3bdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756860684&rft_id=info:pmid/35238719&rfr_iscdi=true