Loading…
Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E
Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules i...
Saved in:
Published in: | The Journal of chemical physics 2022-03, Vol.156 (11), p.114501-114501 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33 |
container_end_page | 114501 |
container_issue | 11 |
container_start_page | 114501 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Grotz, Kara K. Schwierz, Nadine |
description | Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes. |
doi_str_mv | 10.1063/5.0087292 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35317575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640143185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</originalsourceid><addsrcrecordid>eNp90dFqFDEUBuAgit1WL3wBCXijpdOeJJPJxDtZWi1UWqheD5nMyTZlJrMmM619Ax_brLtaEPQmhwMfP4f8hLxicMygEifyGKBWXPMnZMGg1oWqNDwlCwDOCl1BtUf2U7oFAKZ4-ZzsCSmYkkouyI_PZhUw-XmgbowWqfPYd2mz0MurJb03E0Z676cbaqydY15pGvs7M_kxHNH8FK0PnQ-rI2pCt_UFfrc3JqyQruO4xjh5TO_p9WwtpuTmnk7RhORysIvjQK-vlienL8gzZ_qEL3fzgHw9O_2y_FRcXH48X364KGzJ6qmwoJUErBlvW17zTqPqOHNKKd0Z6VhtgNeV7EqNYIVwCE4JcGWpwYBuhTggb7e5-bRvM6apGXyy2Pcm4DinhlclFwIkrzJ98xe9HecY8nUbBawUrJZZvdsqG8eUIrpmHf1g4kPDoNnU08hmV0-2r3eJcztg90f-7iODwy1I1k-__vi_af_Ed2N8hM26c-IntwSlvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640143185</pqid></control><display><type>article</type><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Grotz, Kara K. ; Schwierz, Nadine</creator><creatorcontrib>Grotz, Kara K. ; Schwierz, Nadine</creatorcontrib><description>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0087292</identifier><identifier>PMID: 35317575</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding ; Biological activity ; Biomolecules ; Coordination numbers ; Fluid dynamics ; Free energy ; Magnesium ; Mathematical models ; Molecular dynamics ; Parameters ; Physical simulation ; Solvation ; Time</subject><ispartof>The Journal of chemical physics, 2022-03, Vol.156 (11), p.114501-114501</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</citedby><cites>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</cites><orcidid>0000-0002-3075-7958 ; 0000-0003-4191-2674 ; s0000000341912674 ; s0000000230757958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0087292$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35317575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grotz, Kara K.</creatorcontrib><creatorcontrib>Schwierz, Nadine</creatorcontrib><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</description><subject>Binding</subject><subject>Biological activity</subject><subject>Biomolecules</subject><subject>Coordination numbers</subject><subject>Fluid dynamics</subject><subject>Free energy</subject><subject>Magnesium</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Parameters</subject><subject>Physical simulation</subject><subject>Solvation</subject><subject>Time</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90dFqFDEUBuAgit1WL3wBCXijpdOeJJPJxDtZWi1UWqheD5nMyTZlJrMmM619Ax_brLtaEPQmhwMfP4f8hLxicMygEifyGKBWXPMnZMGg1oWqNDwlCwDOCl1BtUf2U7oFAKZ4-ZzsCSmYkkouyI_PZhUw-XmgbowWqfPYd2mz0MurJb03E0Z676cbaqydY15pGvs7M_kxHNH8FK0PnQ-rI2pCt_UFfrc3JqyQruO4xjh5TO_p9WwtpuTmnk7RhORysIvjQK-vlienL8gzZ_qEL3fzgHw9O_2y_FRcXH48X364KGzJ6qmwoJUErBlvW17zTqPqOHNKKd0Z6VhtgNeV7EqNYIVwCE4JcGWpwYBuhTggb7e5-bRvM6apGXyy2Pcm4DinhlclFwIkrzJ98xe9HecY8nUbBawUrJZZvdsqG8eUIrpmHf1g4kPDoNnU08hmV0-2r3eJcztg90f-7iODwy1I1k-__vi_af_Ed2N8hM26c-IntwSlvw</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Grotz, Kara K.</creator><creator>Schwierz, Nadine</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3075-7958</orcidid><orcidid>https://orcid.org/0000-0003-4191-2674</orcidid><orcidid>https://orcid.org/s0000000341912674</orcidid><orcidid>https://orcid.org/s0000000230757958</orcidid></search><sort><creationdate>20220321</creationdate><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><author>Grotz, Kara K. ; Schwierz, Nadine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Biological activity</topic><topic>Biomolecules</topic><topic>Coordination numbers</topic><topic>Fluid dynamics</topic><topic>Free energy</topic><topic>Magnesium</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Parameters</topic><topic>Physical simulation</topic><topic>Solvation</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grotz, Kara K.</creatorcontrib><creatorcontrib>Schwierz, Nadine</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grotz, Kara K.</au><au>Schwierz, Nadine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-03-21</date><risdate>2022</risdate><volume>156</volume><issue>11</issue><spage>114501</spage><epage>114501</epage><pages>114501-114501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35317575</pmid><doi>10.1063/5.0087292</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3075-7958</orcidid><orcidid>https://orcid.org/0000-0003-4191-2674</orcidid><orcidid>https://orcid.org/s0000000341912674</orcidid><orcidid>https://orcid.org/s0000000230757958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-03, Vol.156 (11), p.114501-114501 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_35317575 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Binding Biological activity Biomolecules Coordination numbers Fluid dynamics Free energy Magnesium Mathematical models Molecular dynamics Parameters Physical simulation Solvation Time |
title | Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20force%20fields%20for%20OPC%20water%20with%20accurate%20solvation,%20ion-binding,%20and%20water-exchange%20properties:%20Successful%20transfer%20from%20SPC/E&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Grotz,%20Kara%20K.&rft.date=2022-03-21&rft.volume=156&rft.issue=11&rft.spage=114501&rft.epage=114501&rft.pages=114501-114501&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0087292&rft_dat=%3Cproquest_pubme%3E2640143185%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640143185&rft_id=info:pmid/35317575&rfr_iscdi=true |