Loading…

Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E

Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules i...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-03, Vol.156 (11), p.114501-114501
Main Authors: Grotz, Kara K., Schwierz, Nadine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33
cites cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33
container_end_page 114501
container_issue 11
container_start_page 114501
container_title The Journal of chemical physics
container_volume 156
creator Grotz, Kara K.
Schwierz, Nadine
description Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.
doi_str_mv 10.1063/5.0087292
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35317575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640143185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</originalsourceid><addsrcrecordid>eNp90dFqFDEUBuAgit1WL3wBCXijpdOeJJPJxDtZWi1UWqheD5nMyTZlJrMmM619Ax_brLtaEPQmhwMfP4f8hLxicMygEifyGKBWXPMnZMGg1oWqNDwlCwDOCl1BtUf2U7oFAKZ4-ZzsCSmYkkouyI_PZhUw-XmgbowWqfPYd2mz0MurJb03E0Z676cbaqydY15pGvs7M_kxHNH8FK0PnQ-rI2pCt_UFfrc3JqyQruO4xjh5TO_p9WwtpuTmnk7RhORysIvjQK-vlienL8gzZ_qEL3fzgHw9O_2y_FRcXH48X364KGzJ6qmwoJUErBlvW17zTqPqOHNKKd0Z6VhtgNeV7EqNYIVwCE4JcGWpwYBuhTggb7e5-bRvM6apGXyy2Pcm4DinhlclFwIkrzJ98xe9HecY8nUbBawUrJZZvdsqG8eUIrpmHf1g4kPDoNnU08hmV0-2r3eJcztg90f-7iODwy1I1k-__vi_af_Ed2N8hM26c-IntwSlvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640143185</pqid></control><display><type>article</type><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Grotz, Kara K. ; Schwierz, Nadine</creator><creatorcontrib>Grotz, Kara K. ; Schwierz, Nadine</creatorcontrib><description>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0087292</identifier><identifier>PMID: 35317575</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding ; Biological activity ; Biomolecules ; Coordination numbers ; Fluid dynamics ; Free energy ; Magnesium ; Mathematical models ; Molecular dynamics ; Parameters ; Physical simulation ; Solvation ; Time</subject><ispartof>The Journal of chemical physics, 2022-03, Vol.156 (11), p.114501-114501</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</citedby><cites>FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</cites><orcidid>0000-0002-3075-7958 ; 0000-0003-4191-2674 ; s0000000341912674 ; s0000000230757958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0087292$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35317575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grotz, Kara K.</creatorcontrib><creatorcontrib>Schwierz, Nadine</creatorcontrib><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</description><subject>Binding</subject><subject>Biological activity</subject><subject>Biomolecules</subject><subject>Coordination numbers</subject><subject>Fluid dynamics</subject><subject>Free energy</subject><subject>Magnesium</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Parameters</subject><subject>Physical simulation</subject><subject>Solvation</subject><subject>Time</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90dFqFDEUBuAgit1WL3wBCXijpdOeJJPJxDtZWi1UWqheD5nMyTZlJrMmM619Ax_brLtaEPQmhwMfP4f8hLxicMygEifyGKBWXPMnZMGg1oWqNDwlCwDOCl1BtUf2U7oFAKZ4-ZzsCSmYkkouyI_PZhUw-XmgbowWqfPYd2mz0MurJb03E0Z676cbaqydY15pGvs7M_kxHNH8FK0PnQ-rI2pCt_UFfrc3JqyQruO4xjh5TO_p9WwtpuTmnk7RhORysIvjQK-vlienL8gzZ_qEL3fzgHw9O_2y_FRcXH48X364KGzJ6qmwoJUErBlvW17zTqPqOHNKKd0Z6VhtgNeV7EqNYIVwCE4JcGWpwYBuhTggb7e5-bRvM6apGXyy2Pcm4DinhlclFwIkrzJ98xe9HecY8nUbBawUrJZZvdsqG8eUIrpmHf1g4kPDoNnU08hmV0-2r3eJcztg90f-7iODwy1I1k-__vi_af_Ed2N8hM26c-IntwSlvw</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Grotz, Kara K.</creator><creator>Schwierz, Nadine</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3075-7958</orcidid><orcidid>https://orcid.org/0000-0003-4191-2674</orcidid><orcidid>https://orcid.org/s0000000341912674</orcidid><orcidid>https://orcid.org/s0000000230757958</orcidid></search><sort><creationdate>20220321</creationdate><title>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</title><author>Grotz, Kara K. ; Schwierz, Nadine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>Biological activity</topic><topic>Biomolecules</topic><topic>Coordination numbers</topic><topic>Fluid dynamics</topic><topic>Free energy</topic><topic>Magnesium</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Parameters</topic><topic>Physical simulation</topic><topic>Solvation</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grotz, Kara K.</creatorcontrib><creatorcontrib>Schwierz, Nadine</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grotz, Kara K.</au><au>Schwierz, Nadine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-03-21</date><risdate>2022</risdate><volume>156</volume><issue>11</issue><spage>114501</spage><epage>114501</epage><pages>114501-114501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using 12 different Mg2+ parameter sets that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygens on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35317575</pmid><doi>10.1063/5.0087292</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3075-7958</orcidid><orcidid>https://orcid.org/0000-0003-4191-2674</orcidid><orcidid>https://orcid.org/s0000000341912674</orcidid><orcidid>https://orcid.org/s0000000230757958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-03, Vol.156 (11), p.114501-114501
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_35317575
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Binding
Biological activity
Biomolecules
Coordination numbers
Fluid dynamics
Free energy
Magnesium
Mathematical models
Molecular dynamics
Parameters
Physical simulation
Solvation
Time
title Magnesium force fields for OPC water with accurate solvation, ion-binding, and water-exchange properties: Successful transfer from SPC/E
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20force%20fields%20for%20OPC%20water%20with%20accurate%20solvation,%20ion-binding,%20and%20water-exchange%20properties:%20Successful%20transfer%20from%20SPC/E&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Grotz,%20Kara%20K.&rft.date=2022-03-21&rft.volume=156&rft.issue=11&rft.spage=114501&rft.epage=114501&rft.pages=114501-114501&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0087292&rft_dat=%3Cproquest_pubme%3E2640143185%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-c09750e812bb282d9e7d21f7779da5f18a02865d49e0c33fe0f730f4490a09b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640143185&rft_id=info:pmid/35317575&rfr_iscdi=true