Loading…

Superior Radiation Resistance of ZrO 2 -Modified W Composites

The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded th...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-03, Vol.15 (6)
Main Authors: Cui, Bo, Luo, Chunyang, Chen, Xiaoxi, Zou, Chengqin, Li, Muhong, Xu, Liujie, Yang, Jijun, Meng, Xianfu, Zhang, Haibin, Zhou, Xiaosong, Peng, Shuming, Shen, Huahai
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 6
container_start_page
container_title Materials
container_volume 15
creator Cui, Bo
Luo, Chunyang
Chen, Xiaoxi
Zou, Chengqin
Li, Muhong
Xu, Liujie
Yang, Jijun
Meng, Xianfu
Zhang, Haibin
Zhou, Xiaosong
Peng, Shuming
Shen, Huahai
description The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.
doi_str_mv 10.3390/ma15061985
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35329437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35329437</sourcerecordid><originalsourceid>FETCH-pubmed_primary_353294373</originalsourceid><addsrcrecordid>eNqFjbEKwjAURYMotmgXP0DeD1STpq3N4FQUFxGqILiUaFKImCYk7eDf66Dg5l3OGQ5chGYELyhleKk5yXBOWJENUEgYy2PC0nT44wGKvL_j9yglRcLGKKAZTVhKVyFaH3srnTIOKi4U75RpoZJe-Y63NwmmgYs7QALx3gjVKCngDKXR1njVST9Fo4Y_vIw-nKD5dnMqd7Htr1qK2jqluXvW3z_6N3gB0VI7CA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</creator><creatorcontrib>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</creatorcontrib><description>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15061985</identifier><identifier>PMID: 35329437</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Materials, 2022-03, Vol.15 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0086-2714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35329437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Luo, Chunyang</creatorcontrib><creatorcontrib>Chen, Xiaoxi</creatorcontrib><creatorcontrib>Zou, Chengqin</creatorcontrib><creatorcontrib>Li, Muhong</creatorcontrib><creatorcontrib>Xu, Liujie</creatorcontrib><creatorcontrib>Yang, Jijun</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Xiaosong</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</description><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjbEKwjAURYMotmgXP0DeD1STpq3N4FQUFxGqILiUaFKImCYk7eDf66Dg5l3OGQ5chGYELyhleKk5yXBOWJENUEgYy2PC0nT44wGKvL_j9yglRcLGKKAZTVhKVyFaH3srnTIOKi4U75RpoZJe-Y63NwmmgYs7QALx3gjVKCngDKXR1njVST9Fo4Y_vIw-nKD5dnMqd7Htr1qK2jqluXvW3z_6N3gB0VI7CA</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Cui, Bo</creator><creator>Luo, Chunyang</creator><creator>Chen, Xiaoxi</creator><creator>Zou, Chengqin</creator><creator>Li, Muhong</creator><creator>Xu, Liujie</creator><creator>Yang, Jijun</creator><creator>Meng, Xianfu</creator><creator>Zhang, Haibin</creator><creator>Zhou, Xiaosong</creator><creator>Peng, Shuming</creator><creator>Shen, Huahai</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-0086-2714</orcidid></search><sort><creationdate>20220308</creationdate><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><author>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_353294373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Luo, Chunyang</creatorcontrib><creatorcontrib>Chen, Xiaoxi</creatorcontrib><creatorcontrib>Zou, Chengqin</creatorcontrib><creatorcontrib>Li, Muhong</creatorcontrib><creatorcontrib>Xu, Liujie</creatorcontrib><creatorcontrib>Yang, Jijun</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Xiaosong</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><collection>PubMed</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Bo</au><au>Luo, Chunyang</au><au>Chen, Xiaoxi</au><au>Zou, Chengqin</au><au>Li, Muhong</au><au>Xu, Liujie</au><au>Yang, Jijun</au><au>Meng, Xianfu</au><au>Zhang, Haibin</au><au>Zhou, Xiaosong</au><au>Peng, Shuming</au><au>Shen, Huahai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Radiation Resistance of ZrO 2 -Modified W Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</abstract><cop>Switzerland</cop><pmid>35329437</pmid><doi>10.3390/ma15061985</doi><orcidid>https://orcid.org/0000-0002-0086-2714</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-03, Vol.15 (6)
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmed_primary_35329437
source NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry
title Superior Radiation Resistance of ZrO 2 -Modified W Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Radiation%20Resistance%20of%20ZrO%202%20-Modified%20W%20Composites&rft.jtitle=Materials&rft.au=Cui,%20Bo&rft.date=2022-03-08&rft.volume=15&rft.issue=6&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15061985&rft_dat=%3Cpubmed%3E35329437%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_353294373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35329437&rfr_iscdi=true