Loading…
Superior Radiation Resistance of ZrO 2 -Modified W Composites
The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded th...
Saved in:
Published in: | Materials 2022-03, Vol.15 (6) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Materials |
container_volume | 15 |
creator | Cui, Bo Luo, Chunyang Chen, Xiaoxi Zou, Chengqin Li, Muhong Xu, Liujie Yang, Jijun Meng, Xianfu Zhang, Haibin Zhou, Xiaosong Peng, Shuming Shen, Huahai |
description | The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities. |
doi_str_mv | 10.3390/ma15061985 |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35329437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35329437</sourcerecordid><originalsourceid>FETCH-pubmed_primary_353294373</originalsourceid><addsrcrecordid>eNqFjbEKwjAURYMotmgXP0DeD1STpq3N4FQUFxGqILiUaFKImCYk7eDf66Dg5l3OGQ5chGYELyhleKk5yXBOWJENUEgYy2PC0nT44wGKvL_j9yglRcLGKKAZTVhKVyFaH3srnTIOKi4U75RpoZJe-Y63NwmmgYs7QALx3gjVKCngDKXR1njVST9Fo4Y_vIw-nKD5dnMqd7Htr1qK2jqluXvW3z_6N3gB0VI7CA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</creator><creatorcontrib>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</creatorcontrib><description>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15061985</identifier><identifier>PMID: 35329437</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Materials, 2022-03, Vol.15 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0086-2714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35329437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Luo, Chunyang</creatorcontrib><creatorcontrib>Chen, Xiaoxi</creatorcontrib><creatorcontrib>Zou, Chengqin</creatorcontrib><creatorcontrib>Li, Muhong</creatorcontrib><creatorcontrib>Xu, Liujie</creatorcontrib><creatorcontrib>Yang, Jijun</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Xiaosong</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</description><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjbEKwjAURYMotmgXP0DeD1STpq3N4FQUFxGqILiUaFKImCYk7eDf66Dg5l3OGQ5chGYELyhleKk5yXBOWJENUEgYy2PC0nT44wGKvL_j9yglRcLGKKAZTVhKVyFaH3srnTIOKi4U75RpoZJe-Y63NwmmgYs7QALx3gjVKCngDKXR1njVST9Fo4Y_vIw-nKD5dnMqd7Htr1qK2jqluXvW3z_6N3gB0VI7CA</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Cui, Bo</creator><creator>Luo, Chunyang</creator><creator>Chen, Xiaoxi</creator><creator>Zou, Chengqin</creator><creator>Li, Muhong</creator><creator>Xu, Liujie</creator><creator>Yang, Jijun</creator><creator>Meng, Xianfu</creator><creator>Zhang, Haibin</creator><creator>Zhou, Xiaosong</creator><creator>Peng, Shuming</creator><creator>Shen, Huahai</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-0086-2714</orcidid></search><sort><creationdate>20220308</creationdate><title>Superior Radiation Resistance of ZrO 2 -Modified W Composites</title><author>Cui, Bo ; Luo, Chunyang ; Chen, Xiaoxi ; Zou, Chengqin ; Li, Muhong ; Xu, Liujie ; Yang, Jijun ; Meng, Xianfu ; Zhang, Haibin ; Zhou, Xiaosong ; Peng, Shuming ; Shen, Huahai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_353294373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Luo, Chunyang</creatorcontrib><creatorcontrib>Chen, Xiaoxi</creatorcontrib><creatorcontrib>Zou, Chengqin</creatorcontrib><creatorcontrib>Li, Muhong</creatorcontrib><creatorcontrib>Xu, Liujie</creatorcontrib><creatorcontrib>Yang, Jijun</creatorcontrib><creatorcontrib>Meng, Xianfu</creatorcontrib><creatorcontrib>Zhang, Haibin</creatorcontrib><creatorcontrib>Zhou, Xiaosong</creatorcontrib><creatorcontrib>Peng, Shuming</creatorcontrib><creatorcontrib>Shen, Huahai</creatorcontrib><collection>PubMed</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Bo</au><au>Luo, Chunyang</au><au>Chen, Xiaoxi</au><au>Zou, Chengqin</au><au>Li, Muhong</au><au>Xu, Liujie</au><au>Yang, Jijun</au><au>Meng, Xianfu</au><au>Zhang, Haibin</au><au>Zhou, Xiaosong</au><au>Peng, Shuming</au><au>Shen, Huahai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Radiation Resistance of ZrO 2 -Modified W Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2 loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.</abstract><cop>Switzerland</cop><pmid>35329437</pmid><doi>10.3390/ma15061985</doi><orcidid>https://orcid.org/0000-0002-0086-2714</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-03, Vol.15 (6) |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmed_primary_35329437 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database; Free Full-Text Journals in Chemistry |
title | Superior Radiation Resistance of ZrO 2 -Modified W Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Radiation%20Resistance%20of%20ZrO%202%20-Modified%20W%20Composites&rft.jtitle=Materials&rft.au=Cui,%20Bo&rft.date=2022-03-08&rft.volume=15&rft.issue=6&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15061985&rft_dat=%3Cpubmed%3E35329437%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_353294373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35329437&rfr_iscdi=true |