Loading…
Deformation-Compensated Learning for Image Reconstruction Without Ground Truth
Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. How...
Saved in:
Published in: | IEEE transactions on medical imaging 2022-09, Vol.41 (9), p.2371-2384 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73 |
container_end_page | 2384 |
container_issue | 9 |
container_start_page | 2371 |
container_title | IEEE transactions on medical imaging |
container_volume | 41 |
creator | Gan, Weijie Sun, Yu Eldeniz, Cihat Liu, Jiaming An, Hongyu Kamilov, Ulugbek S. |
description | Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality. |
doi_str_mv | 10.1109/TMI.2022.3163018 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35344490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743932</ieee_id><sourcerecordid>2644946877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73</originalsourceid><addsrcrecordid>eNpdkd2LEzEUxYO4uLX6LggysC--TDdfk0xeBOm6a6GrIBV9C5nMnXaWTlKTjOB_b4Z2i-7TfTi_e889HITeELwgBKvrzf1qQTGlC0YEw6R-hmakquqSVvznczTDVNYlxoJeopcxPmBMeIXVC3TJKsY5V3iGvtxA58NgUu9dufTDAVw0CdpiDSa43m2LLBerwWyh-AbWu5jCaCe6-NGnnR9TcRf86NpiE8a0e4UuOrOP8Po05-j77afN8nO5_nq3Wn5clzb7plKxlshWdKJmteGyA9VaYwRXTdVUSkpmlZINpY3g3DYgjIBKdLWiVkoCnWRz9OF49zA2A7QWXApmrw-hH0z4o73p9f-K63d6639rxZXkOf4cvT8dCP7XCDHpoY8W9nvjwI9R0-ysuKjl5HX1BH3wY3A5nqYS14IzrESm8JGywccYoDs_Q7CeytK5LD2VpU9l5ZV3_4Y4Lzy2k4G3R6AHgLM8BVCMsr9UEpma</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708643096</pqid></control><display><type>article</type><title>Deformation-Compensated Learning for Image Reconstruction Without Ground Truth</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gan, Weijie ; Sun, Yu ; Eldeniz, Cihat ; Liu, Jiaming ; An, Hongyu ; Kamilov, Ulugbek S.</creator><creatorcontrib>Gan, Weijie ; Sun, Yu ; Eldeniz, Cihat ; Liu, Jiaming ; An, Hongyu ; Kamilov, Ulugbek S.</creatorcontrib><description>Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3163018</identifier><identifier>PMID: 35344490</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Convolutional neural networks ; Deep learning ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Imaging ; Inverse problems ; Learning ; Machine learning ; Magnetic Resonance Imaging ; magnetic resonance imaging (MRI) ; Medical imaging ; Neural networks ; Neural Networks, Computer ; Noise measurement ; Strain ; Training</subject><ispartof>IEEE transactions on medical imaging, 2022-09, Vol.41 (9), p.2371-2384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73</citedby><cites>FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73</cites><orcidid>0000-0001-7225-9677 ; 0000-0002-1042-4443 ; 0000-0003-3604-784X ; 0000-0001-6459-2269 ; 0000-0002-4457-0916 ; 0000-0001-6770-3278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35344490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gan, Weijie</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Eldeniz, Cihat</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><creatorcontrib>An, Hongyu</creatorcontrib><creatorcontrib>Kamilov, Ulugbek S.</creatorcontrib><title>Deformation-Compensated Learning for Image Reconstruction Without Ground Truth</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.</description><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise measurement</subject><subject>Strain</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkd2LEzEUxYO4uLX6LggysC--TDdfk0xeBOm6a6GrIBV9C5nMnXaWTlKTjOB_b4Z2i-7TfTi_e889HITeELwgBKvrzf1qQTGlC0YEw6R-hmakquqSVvznczTDVNYlxoJeopcxPmBMeIXVC3TJKsY5V3iGvtxA58NgUu9dufTDAVw0CdpiDSa43m2LLBerwWyh-AbWu5jCaCe6-NGnnR9TcRf86NpiE8a0e4UuOrOP8Po05-j77afN8nO5_nq3Wn5clzb7plKxlshWdKJmteGyA9VaYwRXTdVUSkpmlZINpY3g3DYgjIBKdLWiVkoCnWRz9OF49zA2A7QWXApmrw-hH0z4o73p9f-K63d6639rxZXkOf4cvT8dCP7XCDHpoY8W9nvjwI9R0-ysuKjl5HX1BH3wY3A5nqYS14IzrESm8JGywccYoDs_Q7CeytK5LD2VpU9l5ZV3_4Y4Lzy2k4G3R6AHgLM8BVCMsr9UEpma</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Gan, Weijie</creator><creator>Sun, Yu</creator><creator>Eldeniz, Cihat</creator><creator>Liu, Jiaming</creator><creator>An, Hongyu</creator><creator>Kamilov, Ulugbek S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7225-9677</orcidid><orcidid>https://orcid.org/0000-0002-1042-4443</orcidid><orcidid>https://orcid.org/0000-0003-3604-784X</orcidid><orcidid>https://orcid.org/0000-0001-6459-2269</orcidid><orcidid>https://orcid.org/0000-0002-4457-0916</orcidid><orcidid>https://orcid.org/0000-0001-6770-3278</orcidid></search><sort><creationdate>20220901</creationdate><title>Deformation-Compensated Learning for Image Reconstruction Without Ground Truth</title><author>Gan, Weijie ; Sun, Yu ; Eldeniz, Cihat ; Liu, Jiaming ; An, Hongyu ; Kamilov, Ulugbek S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise measurement</topic><topic>Strain</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Gan, Weijie</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Eldeniz, Cihat</creatorcontrib><creatorcontrib>Liu, Jiaming</creatorcontrib><creatorcontrib>An, Hongyu</creatorcontrib><creatorcontrib>Kamilov, Ulugbek S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gan, Weijie</au><au>Sun, Yu</au><au>Eldeniz, Cihat</au><au>Liu, Jiaming</au><au>An, Hongyu</au><au>Kamilov, Ulugbek S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation-Compensated Learning for Image Reconstruction Without Ground Truth</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>41</volume><issue>9</issue><spage>2371</spage><epage>2384</epage><pages>2371-2384</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35344490</pmid><doi>10.1109/TMI.2022.3163018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7225-9677</orcidid><orcidid>https://orcid.org/0000-0002-1042-4443</orcidid><orcidid>https://orcid.org/0000-0003-3604-784X</orcidid><orcidid>https://orcid.org/0000-0001-6459-2269</orcidid><orcidid>https://orcid.org/0000-0002-4457-0916</orcidid><orcidid>https://orcid.org/0000-0001-6770-3278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2022-09, Vol.41 (9), p.2371-2384 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_35344490 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Convolutional neural networks Deep learning Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Imaging Inverse problems Learning Machine learning Magnetic Resonance Imaging magnetic resonance imaging (MRI) Medical imaging Neural networks Neural Networks, Computer Noise measurement Strain Training |
title | Deformation-Compensated Learning for Image Reconstruction Without Ground Truth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation-Compensated%20Learning%20for%20Image%20Reconstruction%20Without%20Ground%20Truth&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Gan,%20Weijie&rft.date=2022-09-01&rft.volume=41&rft.issue=9&rft.spage=2371&rft.epage=2384&rft.pages=2371-2384&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3163018&rft_dat=%3Cproquest_pubme%3E2644946877%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-93d17d6f6838a47fe9dcaa649b5b59773c997b22b644cbe6a6e56f892c771ef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708643096&rft_id=info:pmid/35344490&rft_ieee_id=9743932&rfr_iscdi=true |