Loading…
Activation of persulfate by LaFe 1-x Co x O 3 perovskite catalysts for the degradation of phenolics: Effect of synthetic method and metal substitution
The presence of resistant organic pollutants in environmental substrates requires the development and finding of novel decontamination methods. Advanced oxidation processes are among the most effective methods used for degradation of these pollutants through their oxidation and degradation into non-...
Saved in:
Published in: | The Science of the total environment 2022-08, Vol.832, p.155063 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The presence of resistant organic pollutants in environmental substrates requires the development and finding of novel decontamination methods. Advanced oxidation processes are among the most effective methods used for degradation of these pollutants through their oxidation and degradation into non-toxic and harmless, for the environment, final products. Ιn this research, a series of perovskites of ABO
-type, with La and Fe and/or Co in A and B positions respectively, LaFe
Co
O
(x = 0, 0.25, 0.5, 0.75, 1), were synthesized with two different methods, a soft template method using anionic surfactant and by glycine combustion method and studied for their catalytic activity towards the degradation of phenolic compounds, a major class of environmental pollutants, through persulfate activation. The catalytic activity depended both by the B metal ion of perovskites and their ratio as well as by the synthesis method. LaCoO
prepared with the anionic surfactant method, showed the highest catalytic activity with a rate constant of 0.024 min
. Furthermore, the synthesis method also influenced the stability of perovskites as metal leaching studies showed that perovskites synthesized with the anionic surfactant showed greater stability. Quenching experiments were also used in order to shed light on the catalytic activation mechanism of persulfate for the degradation of phenolics. Overall, the results showed that the synthesis method can significantly affect the catalytic activity of the materials and their stability since the same materials synthesized with different methods show significantly different catalytic properties. |
---|---|
ISSN: | 1879-1026 |