Loading…

Thermophysical properties of lithium thiogallate that are important for optical applications

Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2021-12, Vol.11 (62), p.39177-39187
Main Authors: Kurus, Alexey, Yelisseyev, Alexander, Lobanov, Sergei, Plyusnin, Pavel, Molokeev, Maxim, Solovyev, Leonid, Samoshkin, Dmitry, Stankus, Sergei, Melnikova, Svetlana, Isaenko, Lyudmila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83
cites cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83
container_end_page 39187
container_issue 62
container_start_page 39177
container_title RSC advances
container_volume 11
creator Kurus, Alexey
Yelisseyev, Alexander
Lobanov, Sergei
Plyusnin, Pavel
Molokeev, Maxim
Solovyev, Leonid
Samoshkin, Dmitry
Stankus, Sergei
Melnikova, Svetlana
Isaenko, Lyudmila
description Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO 2− x S x type. The thermal conductivity of LiGaS 2 (about 10.05 W (m −1 K −1 )) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC 2 family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS 2 -based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies V S is observed at room temperature after annealing LiGaS 2 in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS 2 crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS 2 . LiGaS 2 crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.
doi_str_mv 10.1039/d1ra05698k
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35492447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658650270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoKqsX70rBiwjVJE3T5iIs6ycKguxRCGmautG2iUkq7H9v1l3XjzkkA_Pj8WYeAAcIniGYsfMaOQFzysq3DbCLIaEphpRt_up3wL73rzAWzRGmaBvsZDlhmJBiFzxPZ8p1xs7mXkvRJtYZq1zQyiemSVodZnrokviaF9G2IqjYi5AIpxLdWeOC6EPSGJcYG74EhLVtbII2vd8DW41ovdpf_SMwvb6aTm7Th8ebu8n4IZUElyGVOStqWhUkqytaU1pCRmrU4LzCSAlSRM8FoljhsqprJIsyKxmBiikqZCPKbAQulrJ2qDpVS9UHJ1pune6Em3MjNP876fWMv5gPziCJBaPAyUrAmfdB-cA77aWK-_bKDJ5jmpc0h7hYoMf_0FczuD5uFynIinhwmkXqdElJZ7x3qlmbQZAvYuOX6Gn8Fdt9hI9-21-j3yFF4HAJOC_X05_cs0_OtZ5h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609720663</pqid></control><display><type>article</type><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><source>PubMed Central</source><creator>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</creator><creatorcontrib>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</creatorcontrib><description>Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO 2− x S x type. The thermal conductivity of LiGaS 2 (about 10.05 W (m −1 K −1 )) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC 2 family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS 2 -based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies V S is observed at room temperature after annealing LiGaS 2 in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS 2 crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS 2 . LiGaS 2 crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05698k</identifier><identifier>PMID: 35492447</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Crystals ; Current carriers ; Differential thermal analysis ; Excitons ; Lithium ; Low temperature ; Melting points ; Optical filters ; Optical properties ; Photoluminescence ; Refractivity ; Room temperature ; Thermal conductivity ; Thermoluminescence ; Thermophysical properties</subject><ispartof>RSC advances, 2021-12, Vol.11 (62), p.39177-39187</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</citedby><cites>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</cites><orcidid>0000-0001-8397-7762 ; 0000-0001-9550-4137 ; 0000-0002-7494-6240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurus, Alexey</creatorcontrib><creatorcontrib>Yelisseyev, Alexander</creatorcontrib><creatorcontrib>Lobanov, Sergei</creatorcontrib><creatorcontrib>Plyusnin, Pavel</creatorcontrib><creatorcontrib>Molokeev, Maxim</creatorcontrib><creatorcontrib>Solovyev, Leonid</creatorcontrib><creatorcontrib>Samoshkin, Dmitry</creatorcontrib><creatorcontrib>Stankus, Sergei</creatorcontrib><creatorcontrib>Melnikova, Svetlana</creatorcontrib><creatorcontrib>Isaenko, Lyudmila</creatorcontrib><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO 2− x S x type. The thermal conductivity of LiGaS 2 (about 10.05 W (m −1 K −1 )) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC 2 family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS 2 -based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies V S is observed at room temperature after annealing LiGaS 2 in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS 2 crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS 2 . LiGaS 2 crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</description><subject>Chemistry</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Differential thermal analysis</subject><subject>Excitons</subject><subject>Lithium</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Optical filters</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Refractivity</subject><subject>Room temperature</subject><subject>Thermal conductivity</subject><subject>Thermoluminescence</subject><subject>Thermophysical properties</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMoKqsX70rBiwjVJE3T5iIs6ycKguxRCGmautG2iUkq7H9v1l3XjzkkA_Pj8WYeAAcIniGYsfMaOQFzysq3DbCLIaEphpRt_up3wL73rzAWzRGmaBvsZDlhmJBiFzxPZ8p1xs7mXkvRJtYZq1zQyiemSVodZnrokviaF9G2IqjYi5AIpxLdWeOC6EPSGJcYG74EhLVtbII2vd8DW41ovdpf_SMwvb6aTm7Th8ebu8n4IZUElyGVOStqWhUkqytaU1pCRmrU4LzCSAlSRM8FoljhsqprJIsyKxmBiikqZCPKbAQulrJ2qDpVS9UHJ1pune6Em3MjNP876fWMv5gPziCJBaPAyUrAmfdB-cA77aWK-_bKDJ5jmpc0h7hYoMf_0FczuD5uFynIinhwmkXqdElJZ7x3qlmbQZAvYuOX6Gn8Fdt9hI9-21-j3yFF4HAJOC_X05_cs0_OtZ5h</recordid><startdate>20211208</startdate><enddate>20211208</enddate><creator>Kurus, Alexey</creator><creator>Yelisseyev, Alexander</creator><creator>Lobanov, Sergei</creator><creator>Plyusnin, Pavel</creator><creator>Molokeev, Maxim</creator><creator>Solovyev, Leonid</creator><creator>Samoshkin, Dmitry</creator><creator>Stankus, Sergei</creator><creator>Melnikova, Svetlana</creator><creator>Isaenko, Lyudmila</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8397-7762</orcidid><orcidid>https://orcid.org/0000-0001-9550-4137</orcidid><orcidid>https://orcid.org/0000-0002-7494-6240</orcidid></search><sort><creationdate>20211208</creationdate><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><author>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Differential thermal analysis</topic><topic>Excitons</topic><topic>Lithium</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Optical filters</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Refractivity</topic><topic>Room temperature</topic><topic>Thermal conductivity</topic><topic>Thermoluminescence</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurus, Alexey</creatorcontrib><creatorcontrib>Yelisseyev, Alexander</creatorcontrib><creatorcontrib>Lobanov, Sergei</creatorcontrib><creatorcontrib>Plyusnin, Pavel</creatorcontrib><creatorcontrib>Molokeev, Maxim</creatorcontrib><creatorcontrib>Solovyev, Leonid</creatorcontrib><creatorcontrib>Samoshkin, Dmitry</creatorcontrib><creatorcontrib>Stankus, Sergei</creatorcontrib><creatorcontrib>Melnikova, Svetlana</creatorcontrib><creatorcontrib>Isaenko, Lyudmila</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurus, Alexey</au><au>Yelisseyev, Alexander</au><au>Lobanov, Sergei</au><au>Plyusnin, Pavel</au><au>Molokeev, Maxim</au><au>Solovyev, Leonid</au><au>Samoshkin, Dmitry</au><au>Stankus, Sergei</au><au>Melnikova, Svetlana</au><au>Isaenko, Lyudmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical properties of lithium thiogallate that are important for optical applications</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-12-08</date><risdate>2021</risdate><volume>11</volume><issue>62</issue><spage>39177</spage><epage>39187</epage><pages>39177-39187</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO 2− x S x type. The thermal conductivity of LiGaS 2 (about 10.05 W (m −1 K −1 )) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC 2 family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS 2 -based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies V S is observed at room temperature after annealing LiGaS 2 in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS 2 crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS 2 . LiGaS 2 crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492447</pmid><doi>10.1039/d1ra05698k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8397-7762</orcidid><orcidid>https://orcid.org/0000-0001-9550-4137</orcidid><orcidid>https://orcid.org/0000-0002-7494-6240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-12, Vol.11 (62), p.39177-39187
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35492447
source PubMed Central
subjects Chemistry
Crystals
Current carriers
Differential thermal analysis
Excitons
Lithium
Low temperature
Melting points
Optical filters
Optical properties
Photoluminescence
Refractivity
Room temperature
Thermal conductivity
Thermoluminescence
Thermophysical properties
title Thermophysical properties of lithium thiogallate that are important for optical applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20properties%20of%20lithium%20thiogallate%20that%20are%20important%20for%20optical%20applications&rft.jtitle=RSC%20advances&rft.au=Kurus,%20Alexey&rft.date=2021-12-08&rft.volume=11&rft.issue=62&rft.spage=39177&rft.epage=39187&rft.pages=39177-39187&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05698k&rft_dat=%3Cproquest_pubme%3E2658650270%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609720663&rft_id=info:pmid/35492447&rfr_iscdi=true