Loading…
Thermophysical properties of lithium thiogallate that are important for optical applications
Lithium thiogallate LiGaS 2 is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1...
Saved in:
Published in: | RSC advances 2021-12, Vol.11 (62), p.39177-39187 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83 |
container_end_page | 39187 |
container_issue | 62 |
container_start_page | 39177 |
container_title | RSC advances |
container_volume | 11 |
creator | Kurus, Alexey Yelisseyev, Alexander Lobanov, Sergei Plyusnin, Pavel Molokeev, Maxim Solovyev, Leonid Samoshkin, Dmitry Stankus, Sergei Melnikova, Svetlana Isaenko, Lyudmila |
description | Lithium thiogallate LiGaS
2
is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO
2−
x
S
x
type. The thermal conductivity of LiGaS
2
(about 10.05 W (m
−1
K
−1
)) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC
2
family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS
2
-based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies
V
S
is observed at room temperature after annealing LiGaS
2
in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS
2
crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS
2
.
LiGaS
2
crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence. |
doi_str_mv | 10.1039/d1ra05698k |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35492447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658650270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoKqsX70rBiwjVJE3T5iIs6ycKguxRCGmautG2iUkq7H9v1l3XjzkkA_Pj8WYeAAcIniGYsfMaOQFzysq3DbCLIaEphpRt_up3wL73rzAWzRGmaBvsZDlhmJBiFzxPZ8p1xs7mXkvRJtYZq1zQyiemSVodZnrokviaF9G2IqjYi5AIpxLdWeOC6EPSGJcYG74EhLVtbII2vd8DW41ovdpf_SMwvb6aTm7Th8ebu8n4IZUElyGVOStqWhUkqytaU1pCRmrU4LzCSAlSRM8FoljhsqprJIsyKxmBiikqZCPKbAQulrJ2qDpVS9UHJ1pune6Em3MjNP876fWMv5gPziCJBaPAyUrAmfdB-cA77aWK-_bKDJ5jmpc0h7hYoMf_0FczuD5uFynIinhwmkXqdElJZ7x3qlmbQZAvYuOX6Gn8Fdt9hI9-21-j3yFF4HAJOC_X05_cs0_OtZ5h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609720663</pqid></control><display><type>article</type><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><source>PubMed Central</source><creator>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</creator><creatorcontrib>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</creatorcontrib><description>Lithium thiogallate LiGaS
2
is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO
2−
x
S
x
type. The thermal conductivity of LiGaS
2
(about 10.05 W (m
−1
K
−1
)) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC
2
family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS
2
-based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies
V
S
is observed at room temperature after annealing LiGaS
2
in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS
2
crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS
2
.
LiGaS
2
crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra05698k</identifier><identifier>PMID: 35492447</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Crystals ; Current carriers ; Differential thermal analysis ; Excitons ; Lithium ; Low temperature ; Melting points ; Optical filters ; Optical properties ; Photoluminescence ; Refractivity ; Room temperature ; Thermal conductivity ; Thermoluminescence ; Thermophysical properties</subject><ispartof>RSC advances, 2021-12, Vol.11 (62), p.39177-39187</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</citedby><cites>FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</cites><orcidid>0000-0001-8397-7762 ; 0000-0001-9550-4137 ; 0000-0002-7494-6240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurus, Alexey</creatorcontrib><creatorcontrib>Yelisseyev, Alexander</creatorcontrib><creatorcontrib>Lobanov, Sergei</creatorcontrib><creatorcontrib>Plyusnin, Pavel</creatorcontrib><creatorcontrib>Molokeev, Maxim</creatorcontrib><creatorcontrib>Solovyev, Leonid</creatorcontrib><creatorcontrib>Samoshkin, Dmitry</creatorcontrib><creatorcontrib>Stankus, Sergei</creatorcontrib><creatorcontrib>Melnikova, Svetlana</creatorcontrib><creatorcontrib>Isaenko, Lyudmila</creatorcontrib><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Lithium thiogallate LiGaS
2
is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO
2−
x
S
x
type. The thermal conductivity of LiGaS
2
(about 10.05 W (m
−1
K
−1
)) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC
2
family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS
2
-based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies
V
S
is observed at room temperature after annealing LiGaS
2
in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS
2
crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS
2
.
LiGaS
2
crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</description><subject>Chemistry</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Differential thermal analysis</subject><subject>Excitons</subject><subject>Lithium</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Optical filters</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Refractivity</subject><subject>Room temperature</subject><subject>Thermal conductivity</subject><subject>Thermoluminescence</subject><subject>Thermophysical properties</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMoKqsX70rBiwjVJE3T5iIs6ycKguxRCGmautG2iUkq7H9v1l3XjzkkA_Pj8WYeAAcIniGYsfMaOQFzysq3DbCLIaEphpRt_up3wL73rzAWzRGmaBvsZDlhmJBiFzxPZ8p1xs7mXkvRJtYZq1zQyiemSVodZnrokviaF9G2IqjYi5AIpxLdWeOC6EPSGJcYG74EhLVtbII2vd8DW41ovdpf_SMwvb6aTm7Th8ebu8n4IZUElyGVOStqWhUkqytaU1pCRmrU4LzCSAlSRM8FoljhsqprJIsyKxmBiikqZCPKbAQulrJ2qDpVS9UHJ1pune6Em3MjNP876fWMv5gPziCJBaPAyUrAmfdB-cA77aWK-_bKDJ5jmpc0h7hYoMf_0FczuD5uFynIinhwmkXqdElJZ7x3qlmbQZAvYuOX6Gn8Fdt9hI9-21-j3yFF4HAJOC_X05_cs0_OtZ5h</recordid><startdate>20211208</startdate><enddate>20211208</enddate><creator>Kurus, Alexey</creator><creator>Yelisseyev, Alexander</creator><creator>Lobanov, Sergei</creator><creator>Plyusnin, Pavel</creator><creator>Molokeev, Maxim</creator><creator>Solovyev, Leonid</creator><creator>Samoshkin, Dmitry</creator><creator>Stankus, Sergei</creator><creator>Melnikova, Svetlana</creator><creator>Isaenko, Lyudmila</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8397-7762</orcidid><orcidid>https://orcid.org/0000-0001-9550-4137</orcidid><orcidid>https://orcid.org/0000-0002-7494-6240</orcidid></search><sort><creationdate>20211208</creationdate><title>Thermophysical properties of lithium thiogallate that are important for optical applications</title><author>Kurus, Alexey ; Yelisseyev, Alexander ; Lobanov, Sergei ; Plyusnin, Pavel ; Molokeev, Maxim ; Solovyev, Leonid ; Samoshkin, Dmitry ; Stankus, Sergei ; Melnikova, Svetlana ; Isaenko, Lyudmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Differential thermal analysis</topic><topic>Excitons</topic><topic>Lithium</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Optical filters</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Refractivity</topic><topic>Room temperature</topic><topic>Thermal conductivity</topic><topic>Thermoluminescence</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurus, Alexey</creatorcontrib><creatorcontrib>Yelisseyev, Alexander</creatorcontrib><creatorcontrib>Lobanov, Sergei</creatorcontrib><creatorcontrib>Plyusnin, Pavel</creatorcontrib><creatorcontrib>Molokeev, Maxim</creatorcontrib><creatorcontrib>Solovyev, Leonid</creatorcontrib><creatorcontrib>Samoshkin, Dmitry</creatorcontrib><creatorcontrib>Stankus, Sergei</creatorcontrib><creatorcontrib>Melnikova, Svetlana</creatorcontrib><creatorcontrib>Isaenko, Lyudmila</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurus, Alexey</au><au>Yelisseyev, Alexander</au><au>Lobanov, Sergei</au><au>Plyusnin, Pavel</au><au>Molokeev, Maxim</au><au>Solovyev, Leonid</au><au>Samoshkin, Dmitry</au><au>Stankus, Sergei</au><au>Melnikova, Svetlana</au><au>Isaenko, Lyudmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophysical properties of lithium thiogallate that are important for optical applications</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-12-08</date><risdate>2021</risdate><volume>11</volume><issue>62</issue><spage>39177</spage><epage>39187</epage><pages>39177-39187</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Lithium thiogallate LiGaS
2
is one of the most common nonlinear crystals for mid-IR due to its extreme beam strength and wide transparency range; however, its thermophysical properties have not yet been practically studied. Large crystals of high optical quality are grown. DTA revealed features at 1224 K below melting point (1304 K) that are associated with the oxygen containing compounds of the LiGaO
2−
x
S
x
type. The thermal conductivity of LiGaS
2
(about 10.05 W (m
−1
K
−1
)) and band gap value (3.93 eV at 300 K) are found to be the highest in the LiBC
2
family. Isotropic points in the dispersion characteristics for the refractive index are found and LiGaS
2
-based narrow-band optical filters, smoothly tunable with temperature changes, are demonstrated. Intense blue photoluminescence of anionic vacancies
V
S
is observed at room temperature after annealing LiGaS
2
in vacuum, whereas orange low-temperature emission is related to self-trapped excitons. When LiGaS
2
crystals are heated, spontaneous luminescence (pyroluminescence) takes place, or thermoluminescence after preliminary UV excitation; the parameters of traps of charge carriers are estimated. The obtained data confirm the high optical stability of this material and open up prospects for the creation of new optical devices based on LiGaS
2
.
LiGaS
2
crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492447</pmid><doi>10.1039/d1ra05698k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8397-7762</orcidid><orcidid>https://orcid.org/0000-0001-9550-4137</orcidid><orcidid>https://orcid.org/0000-0002-7494-6240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2021-12, Vol.11 (62), p.39177-39187 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35492447 |
source | PubMed Central |
subjects | Chemistry Crystals Current carriers Differential thermal analysis Excitons Lithium Low temperature Melting points Optical filters Optical properties Photoluminescence Refractivity Room temperature Thermal conductivity Thermoluminescence Thermophysical properties |
title | Thermophysical properties of lithium thiogallate that are important for optical applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophysical%20properties%20of%20lithium%20thiogallate%20that%20are%20important%20for%20optical%20applications&rft.jtitle=RSC%20advances&rft.au=Kurus,%20Alexey&rft.date=2021-12-08&rft.volume=11&rft.issue=62&rft.spage=39177&rft.epage=39187&rft.pages=39177-39187&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra05698k&rft_dat=%3Cproquest_pubme%3E2658650270%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-c597d6b743db6d668094d1f25b21ea472617162e28bdd1c7838940e9e6acfa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609720663&rft_id=info:pmid/35492447&rfr_iscdi=true |