Loading…

The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study

Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeratio...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2020-08, Vol.1 (52), p.3127-3138
Main Authors: Fang, Bin, Ning, Fulong, Hu, Sijia, Guo, Dongdong, Ou, Wenjia, Wang, Cunfang, Wen, Jiang, Sun, Jiaxin, Liu, Zhichao, Koh, Carolyn A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3
cites cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3
container_end_page 3138
container_issue 52
container_start_page 3127
container_title RSC advances
container_volume 1
creator Fang, Bin
Ning, Fulong
Hu, Sijia
Guo, Dongdong
Ou, Wenjia
Wang, Cunfang
Wen, Jiang
Sun, Jiaxin
Liu, Zhichao
Koh, Carolyn A
description Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties. Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.
doi_str_mv 10.1039/d0ra04088f
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35520650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661080923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdRbKl98V2J-CLCav5NZqcPQqlWhYIg9TncTW52U2aSbZIR5jP4pY27da0-mJeEc34c7uWkaZ4y-oZR0b-1NAGVdLl0D5pjTqVacKr6h_feR81pzje0HtUyrtjj5ki0bXVaetz8uN4gQefQFBIdyVNyYAqEkkkMZDPbBAXJFlLxZkAC6_UQR6yir7YPZPC3k7c7MBpIq6qaGIoPU5wyyXMuOOYzAmSMA5ppgETsHGD0prp-rMIuKZfJzk-aRw6GjKd390nz7fLD9cWnxdWXj58vzq8WRvZtWUiHvZAGeU87R5HBSgLjhmOLXDlJBVvaloFDIa1UbNVDu2Qds13PhKyaOGne7XO302pEazCUBIPeJj9CmnUEr_92gt_odfyue9oqIVUNeHUXkOLthLno0WeDwwAB69qaK8XokvZcVPTlP-hNnFKo62kuRVeL6ASt1Os9ZVLMOaE7DMOo_lWzfk-_nu9qvqzw8_vjH9DfpVbgxR5I2RzcP_9Eb62rzLP_MeInMsG7cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437355730</pqid></control><display><type>article</type><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><source>PMC (PubMed Central)</source><creator>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</creator><creatorcontrib>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</creatorcontrib><description>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties. Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra04088f</identifier><identifier>PMID: 35520650</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Agglomeration ; Binding energy ; Carboxylic acids ; Chemistry ; Computer simulation ; Free energy ; Functional groups ; Gas hydrates ; Gas pipelines ; Liquid bridges ; Molecular dynamics ; Petroleum pipelines ; Quantum chemistry ; Risk management ; Simulation ; Surfactants</subject><ispartof>RSC advances, 2020-08, Vol.1 (52), p.3127-3138</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</citedby><cites>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</cites><orcidid>0000-0003-3452-4032 ; 0000-0003-1236-586X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056346/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056346/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Guo, Dongdong</creatorcontrib><creatorcontrib>Ou, Wenjia</creatorcontrib><creatorcontrib>Wang, Cunfang</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Sun, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Koh, Carolyn A</creatorcontrib><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties. Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</description><subject>Agglomeration</subject><subject>Binding energy</subject><subject>Carboxylic acids</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Gas hydrates</subject><subject>Gas pipelines</subject><subject>Liquid bridges</subject><subject>Molecular dynamics</subject><subject>Petroleum pipelines</subject><subject>Quantum chemistry</subject><subject>Risk management</subject><subject>Simulation</subject><subject>Surfactants</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kl9rFDEUxQdRbKl98V2J-CLCav5NZqcPQqlWhYIg9TncTW52U2aSbZIR5jP4pY27da0-mJeEc34c7uWkaZ4y-oZR0b-1NAGVdLl0D5pjTqVacKr6h_feR81pzje0HtUyrtjj5ki0bXVaetz8uN4gQefQFBIdyVNyYAqEkkkMZDPbBAXJFlLxZkAC6_UQR6yir7YPZPC3k7c7MBpIq6qaGIoPU5wyyXMuOOYzAmSMA5ppgETsHGD0prp-rMIuKZfJzk-aRw6GjKd390nz7fLD9cWnxdWXj58vzq8WRvZtWUiHvZAGeU87R5HBSgLjhmOLXDlJBVvaloFDIa1UbNVDu2Qds13PhKyaOGne7XO302pEazCUBIPeJj9CmnUEr_92gt_odfyue9oqIVUNeHUXkOLthLno0WeDwwAB69qaK8XokvZcVPTlP-hNnFKo62kuRVeL6ASt1Os9ZVLMOaE7DMOo_lWzfk-_nu9qvqzw8_vjH9DfpVbgxR5I2RzcP_9Eb62rzLP_MeInMsG7cw</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Fang, Bin</creator><creator>Ning, Fulong</creator><creator>Hu, Sijia</creator><creator>Guo, Dongdong</creator><creator>Ou, Wenjia</creator><creator>Wang, Cunfang</creator><creator>Wen, Jiang</creator><creator>Sun, Jiaxin</creator><creator>Liu, Zhichao</creator><creator>Koh, Carolyn A</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3452-4032</orcidid><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid></search><sort><creationdate>20200824</creationdate><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><author>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Binding energy</topic><topic>Carboxylic acids</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Gas hydrates</topic><topic>Gas pipelines</topic><topic>Liquid bridges</topic><topic>Molecular dynamics</topic><topic>Petroleum pipelines</topic><topic>Quantum chemistry</topic><topic>Risk management</topic><topic>Simulation</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Guo, Dongdong</creatorcontrib><creatorcontrib>Ou, Wenjia</creatorcontrib><creatorcontrib>Wang, Cunfang</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Sun, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Koh, Carolyn A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bin</au><au>Ning, Fulong</au><au>Hu, Sijia</au><au>Guo, Dongdong</au><au>Ou, Wenjia</au><au>Wang, Cunfang</au><au>Wen, Jiang</au><au>Sun, Jiaxin</au><au>Liu, Zhichao</au><au>Koh, Carolyn A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>1</volume><issue>52</issue><spage>3127</spage><epage>3138</epage><pages>3127-3138</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties. Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520650</pmid><doi>10.1039/d0ra04088f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3452-4032</orcidid><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-08, Vol.1 (52), p.3127-3138
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_35520650
source PMC (PubMed Central)
subjects Agglomeration
Binding energy
Carboxylic acids
Chemistry
Computer simulation
Free energy
Functional groups
Gas hydrates
Gas pipelines
Liquid bridges
Molecular dynamics
Petroleum pipelines
Quantum chemistry
Risk management
Simulation
Surfactants
title The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20surfactants%20on%20hydrate%20particle%20agglomeration%20in%20liquid%20hydrocarbon%20continuous%20systems:%20a%20molecular%20dynamics%20simulation%20study&rft.jtitle=RSC%20advances&rft.au=Fang,%20Bin&rft.date=2020-08-24&rft.volume=1&rft.issue=52&rft.spage=3127&rft.epage=3138&rft.pages=3127-3138&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra04088f&rft_dat=%3Cproquest_pubme%3E2661080923%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437355730&rft_id=info:pmid/35520650&rfr_iscdi=true