Loading…
The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study
Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeratio...
Saved in:
Published in: | RSC advances 2020-08, Vol.1 (52), p.3127-3138 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3 |
container_end_page | 3138 |
container_issue | 52 |
container_start_page | 3127 |
container_title | RSC advances |
container_volume | 1 |
creator | Fang, Bin Ning, Fulong Hu, Sijia Guo, Dongdong Ou, Wenjia Wang, Cunfang Wen, Jiang Sun, Jiaxin Liu, Zhichao Koh, Carolyn A |
description | Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.
Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion. |
doi_str_mv | 10.1039/d0ra04088f |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_35520650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661080923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdRbKl98V2J-CLCav5NZqcPQqlWhYIg9TncTW52U2aSbZIR5jP4pY27da0-mJeEc34c7uWkaZ4y-oZR0b-1NAGVdLl0D5pjTqVacKr6h_feR81pzje0HtUyrtjj5ki0bXVaetz8uN4gQefQFBIdyVNyYAqEkkkMZDPbBAXJFlLxZkAC6_UQR6yir7YPZPC3k7c7MBpIq6qaGIoPU5wyyXMuOOYzAmSMA5ppgETsHGD0prp-rMIuKZfJzk-aRw6GjKd390nz7fLD9cWnxdWXj58vzq8WRvZtWUiHvZAGeU87R5HBSgLjhmOLXDlJBVvaloFDIa1UbNVDu2Qds13PhKyaOGne7XO302pEazCUBIPeJj9CmnUEr_92gt_odfyue9oqIVUNeHUXkOLthLno0WeDwwAB69qaK8XokvZcVPTlP-hNnFKo62kuRVeL6ASt1Os9ZVLMOaE7DMOo_lWzfk-_nu9qvqzw8_vjH9DfpVbgxR5I2RzcP_9Eb62rzLP_MeInMsG7cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437355730</pqid></control><display><type>article</type><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><source>PMC (PubMed Central)</source><creator>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</creator><creatorcontrib>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</creatorcontrib><description>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.
Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra04088f</identifier><identifier>PMID: 35520650</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Agglomeration ; Binding energy ; Carboxylic acids ; Chemistry ; Computer simulation ; Free energy ; Functional groups ; Gas hydrates ; Gas pipelines ; Liquid bridges ; Molecular dynamics ; Petroleum pipelines ; Quantum chemistry ; Risk management ; Simulation ; Surfactants</subject><ispartof>RSC advances, 2020-08, Vol.1 (52), p.3127-3138</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</citedby><cites>FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</cites><orcidid>0000-0003-3452-4032 ; 0000-0003-1236-586X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056346/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056346/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Guo, Dongdong</creatorcontrib><creatorcontrib>Ou, Wenjia</creatorcontrib><creatorcontrib>Wang, Cunfang</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Sun, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Koh, Carolyn A</creatorcontrib><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.
Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</description><subject>Agglomeration</subject><subject>Binding energy</subject><subject>Carboxylic acids</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Gas hydrates</subject><subject>Gas pipelines</subject><subject>Liquid bridges</subject><subject>Molecular dynamics</subject><subject>Petroleum pipelines</subject><subject>Quantum chemistry</subject><subject>Risk management</subject><subject>Simulation</subject><subject>Surfactants</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kl9rFDEUxQdRbKl98V2J-CLCav5NZqcPQqlWhYIg9TncTW52U2aSbZIR5jP4pY27da0-mJeEc34c7uWkaZ4y-oZR0b-1NAGVdLl0D5pjTqVacKr6h_feR81pzje0HtUyrtjj5ki0bXVaetz8uN4gQefQFBIdyVNyYAqEkkkMZDPbBAXJFlLxZkAC6_UQR6yir7YPZPC3k7c7MBpIq6qaGIoPU5wyyXMuOOYzAmSMA5ppgETsHGD0prp-rMIuKZfJzk-aRw6GjKd390nz7fLD9cWnxdWXj58vzq8WRvZtWUiHvZAGeU87R5HBSgLjhmOLXDlJBVvaloFDIa1UbNVDu2Qds13PhKyaOGne7XO302pEazCUBIPeJj9CmnUEr_92gt_odfyue9oqIVUNeHUXkOLthLno0WeDwwAB69qaK8XokvZcVPTlP-hNnFKo62kuRVeL6ASt1Os9ZVLMOaE7DMOo_lWzfk-_nu9qvqzw8_vjH9DfpVbgxR5I2RzcP_9Eb62rzLP_MeInMsG7cw</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Fang, Bin</creator><creator>Ning, Fulong</creator><creator>Hu, Sijia</creator><creator>Guo, Dongdong</creator><creator>Ou, Wenjia</creator><creator>Wang, Cunfang</creator><creator>Wen, Jiang</creator><creator>Sun, Jiaxin</creator><creator>Liu, Zhichao</creator><creator>Koh, Carolyn A</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3452-4032</orcidid><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid></search><sort><creationdate>20200824</creationdate><title>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</title><author>Fang, Bin ; Ning, Fulong ; Hu, Sijia ; Guo, Dongdong ; Ou, Wenjia ; Wang, Cunfang ; Wen, Jiang ; Sun, Jiaxin ; Liu, Zhichao ; Koh, Carolyn A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Binding energy</topic><topic>Carboxylic acids</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Gas hydrates</topic><topic>Gas pipelines</topic><topic>Liquid bridges</topic><topic>Molecular dynamics</topic><topic>Petroleum pipelines</topic><topic>Quantum chemistry</topic><topic>Risk management</topic><topic>Simulation</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Ning, Fulong</creatorcontrib><creatorcontrib>Hu, Sijia</creatorcontrib><creatorcontrib>Guo, Dongdong</creatorcontrib><creatorcontrib>Ou, Wenjia</creatorcontrib><creatorcontrib>Wang, Cunfang</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Sun, Jiaxin</creatorcontrib><creatorcontrib>Liu, Zhichao</creatorcontrib><creatorcontrib>Koh, Carolyn A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bin</au><au>Ning, Fulong</au><au>Hu, Sijia</au><au>Guo, Dongdong</au><au>Ou, Wenjia</au><au>Wang, Cunfang</au><au>Wen, Jiang</au><au>Sun, Jiaxin</au><au>Liu, Zhichao</au><au>Koh, Carolyn A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>1</volume><issue>52</issue><spage>3127</spage><epage>3138</epage><pages>3127-3138</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.
Schematic of anti-agglomeration effect of surfactants promoting gas hydrate particle dispersion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520650</pmid><doi>10.1039/d0ra04088f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3452-4032</orcidid><orcidid>https://orcid.org/0000-0003-1236-586X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-08, Vol.1 (52), p.3127-3138 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_35520650 |
source | PMC (PubMed Central) |
subjects | Agglomeration Binding energy Carboxylic acids Chemistry Computer simulation Free energy Functional groups Gas hydrates Gas pipelines Liquid bridges Molecular dynamics Petroleum pipelines Quantum chemistry Risk management Simulation Surfactants |
title | The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20surfactants%20on%20hydrate%20particle%20agglomeration%20in%20liquid%20hydrocarbon%20continuous%20systems:%20a%20molecular%20dynamics%20simulation%20study&rft.jtitle=RSC%20advances&rft.au=Fang,%20Bin&rft.date=2020-08-24&rft.volume=1&rft.issue=52&rft.spage=3127&rft.epage=3138&rft.pages=3127-3138&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra04088f&rft_dat=%3Cproquest_pubme%3E2661080923%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-4fe934ce2907f0e1ab4a12c2e5e26f40318d51afe34d461b9a58171d7913434d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437355730&rft_id=info:pmid/35520650&rfr_iscdi=true |