Loading…

Time-Optimal Control of Saccadic Eye Movements

A new theory describing the time-optimal control of saccadic eye movements is proposed based on Pontryagin's minimum principle and physiological considerations. The lateral and medial rectus muscle of each eye is assumed to be a parallel combination of an active state tension generator with a v...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1987-01, Vol.BME-34 (1), p.43-55
Main Authors: Enderle, John D., Wolfe, James W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3
cites cdi_FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3
container_end_page 55
container_issue 1
container_start_page 43
container_title IEEE transactions on biomedical engineering
container_volume BME-34
creator Enderle, John D.
Wolfe, James W.
description A new theory describing the time-optimal control of saccadic eye movements is proposed based on Pontryagin's minimum principle and physiological considerations. The lateral and medial rectus muscle of each eye is assumed to be a parallel combination of an active state tension generator with a viscosity and elastic element, connected to a series elastic element. The eyeball is modeled as a sphere connected to a viscosity and elastic element. Each of these elements is assumed to be ideal and linear. The neuronal control strategy is shown to be a first-order time-optimal control signal. Under this condition, the active state tension for each muscle is a low-pass filtered pulse-step waveform. The magnitude of the agonist pulse is a maximum for saccades of all sizes and only the duration of the agonist pulse affects the size of the saccade. The antagonist muscle is completely inhibited during the period of maximum stimulation for the agonist muscle. Horizontal saccadic eye movements were recorded from infrared signals reflected from the anterior surface of the cornea and then digitized. Parameter estimates for the model were calculated by using a conjugate gradient search program which minimizes the integral of the absolute value of the squared error between the model and the data. The predictions of the model under a time-optimal controller are in good agreement with the data.
doi_str_mv 10.1109/TBME.1987.326014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_3557482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4122432</ieee_id><sourcerecordid>77440527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3</originalsourceid><addsrcrecordid>eNo9kElLw0AUxwdRtFbvggg5iLfE2ZejlrpASw_W8zAzfYFIlppJhX57ExJ6ejz-y-P9ELojOCMEm-ft63qZEaNVxqjEhJ-hGRFCp1Qwco5mGBOdGmr4FbqO8adfuebyEl0yIRTXdIaybVFButl3ReXKZNHUXduUSZMnXy4EtytCsjxCsm7-oIK6izfoIndlhNtpztH323K7-EhXm_fPxcsqDYyzLvXU56CxDNzkFITS3gtpJJPSGeGVUMQrqhjD0nMZjDEeOCW5kJyC1zvH5uhp7N23ze8BYmerIgYoS1dDc4hWKc6x6CvmCI_G0DYxtpDbfdu_0h4twXZAZAdEdkBkR0R95GHqPvgKdqfAxKTXHyfdxeDKvHV1KOLJ1juYZsPl-9FWAMBJ5YRSzij7B8ZPdKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77440527</pqid></control><display><type>article</type><title>Time-Optimal Control of Saccadic Eye Movements</title><source>IEEE Xplore (Online service)</source><creator>Enderle, John D. ; Wolfe, James W.</creator><creatorcontrib>Enderle, John D. ; Wolfe, James W.</creatorcontrib><description>A new theory describing the time-optimal control of saccadic eye movements is proposed based on Pontryagin's minimum principle and physiological considerations. The lateral and medial rectus muscle of each eye is assumed to be a parallel combination of an active state tension generator with a viscosity and elastic element, connected to a series elastic element. The eyeball is modeled as a sphere connected to a viscosity and elastic element. Each of these elements is assumed to be ideal and linear. The neuronal control strategy is shown to be a first-order time-optimal control signal. Under this condition, the active state tension for each muscle is a low-pass filtered pulse-step waveform. The magnitude of the agonist pulse is a maximum for saccades of all sizes and only the duration of the agonist pulse affects the size of the saccade. The antagonist muscle is completely inhibited during the period of maximum stimulation for the agonist muscle. Horizontal saccadic eye movements were recorded from infrared signals reflected from the anterior surface of the cornea and then digitized. Parameter estimates for the model were calculated by using a conjugate gradient search program which minimizes the integral of the absolute value of the squared error between the model and the data. The predictions of the model under a time-optimal controller are in good agreement with the data.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.1987.326014</identifier><identifier>PMID: 3557482</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Biological and medical sciences ; Biological system modeling ; Biomechanical Phenomena ; Computerized, statistical medical data processing and models in biomedicine ; Control systems ; Cornea ; Eye Movements ; Humans ; Low pass filters ; Medical sciences ; Models and simulation ; Muscles ; Oculomotor Muscles - physiology ; Oculomotor Nerve - physiology ; Parameter estimation ; Predictive models ; Saccades ; System identification ; Time Factors ; Viscosity</subject><ispartof>IEEE transactions on biomedical engineering, 1987-01, Vol.BME-34 (1), p.43-55</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3</citedby><cites>FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4122432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8233837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3557482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Enderle, John D.</creatorcontrib><creatorcontrib>Wolfe, James W.</creatorcontrib><title>Time-Optimal Control of Saccadic Eye Movements</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>A new theory describing the time-optimal control of saccadic eye movements is proposed based on Pontryagin's minimum principle and physiological considerations. The lateral and medial rectus muscle of each eye is assumed to be a parallel combination of an active state tension generator with a viscosity and elastic element, connected to a series elastic element. The eyeball is modeled as a sphere connected to a viscosity and elastic element. Each of these elements is assumed to be ideal and linear. The neuronal control strategy is shown to be a first-order time-optimal control signal. Under this condition, the active state tension for each muscle is a low-pass filtered pulse-step waveform. The magnitude of the agonist pulse is a maximum for saccades of all sizes and only the duration of the agonist pulse affects the size of the saccade. The antagonist muscle is completely inhibited during the period of maximum stimulation for the agonist muscle. Horizontal saccadic eye movements were recorded from infrared signals reflected from the anterior surface of the cornea and then digitized. Parameter estimates for the model were calculated by using a conjugate gradient search program which minimizes the integral of the absolute value of the squared error between the model and the data. The predictions of the model under a time-optimal controller are in good agreement with the data.</description><subject>Biological and medical sciences</subject><subject>Biological system modeling</subject><subject>Biomechanical Phenomena</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Control systems</subject><subject>Cornea</subject><subject>Eye Movements</subject><subject>Humans</subject><subject>Low pass filters</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Muscles</subject><subject>Oculomotor Muscles - physiology</subject><subject>Oculomotor Nerve - physiology</subject><subject>Parameter estimation</subject><subject>Predictive models</subject><subject>Saccades</subject><subject>System identification</subject><subject>Time Factors</subject><subject>Viscosity</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo9kElLw0AUxwdRtFbvggg5iLfE2ZejlrpASw_W8zAzfYFIlppJhX57ExJ6ejz-y-P9ELojOCMEm-ft63qZEaNVxqjEhJ-hGRFCp1Qwco5mGBOdGmr4FbqO8adfuebyEl0yIRTXdIaybVFButl3ReXKZNHUXduUSZMnXy4EtytCsjxCsm7-oIK6izfoIndlhNtpztH323K7-EhXm_fPxcsqDYyzLvXU56CxDNzkFITS3gtpJJPSGeGVUMQrqhjD0nMZjDEeOCW5kJyC1zvH5uhp7N23ze8BYmerIgYoS1dDc4hWKc6x6CvmCI_G0DYxtpDbfdu_0h4twXZAZAdEdkBkR0R95GHqPvgKdqfAxKTXHyfdxeDKvHV1KOLJ1juYZsPl-9FWAMBJ5YRSzij7B8ZPdKE</recordid><startdate>198701</startdate><enddate>198701</enddate><creator>Enderle, John D.</creator><creator>Wolfe, James W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198701</creationdate><title>Time-Optimal Control of Saccadic Eye Movements</title><author>Enderle, John D. ; Wolfe, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Biological and medical sciences</topic><topic>Biological system modeling</topic><topic>Biomechanical Phenomena</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Control systems</topic><topic>Cornea</topic><topic>Eye Movements</topic><topic>Humans</topic><topic>Low pass filters</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Muscles</topic><topic>Oculomotor Muscles - physiology</topic><topic>Oculomotor Nerve - physiology</topic><topic>Parameter estimation</topic><topic>Predictive models</topic><topic>Saccades</topic><topic>System identification</topic><topic>Time Factors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enderle, John D.</creatorcontrib><creatorcontrib>Wolfe, James W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enderle, John D.</au><au>Wolfe, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Optimal Control of Saccadic Eye Movements</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>1987-01</date><risdate>1987</risdate><volume>BME-34</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>A new theory describing the time-optimal control of saccadic eye movements is proposed based on Pontryagin's minimum principle and physiological considerations. The lateral and medial rectus muscle of each eye is assumed to be a parallel combination of an active state tension generator with a viscosity and elastic element, connected to a series elastic element. The eyeball is modeled as a sphere connected to a viscosity and elastic element. Each of these elements is assumed to be ideal and linear. The neuronal control strategy is shown to be a first-order time-optimal control signal. Under this condition, the active state tension for each muscle is a low-pass filtered pulse-step waveform. The magnitude of the agonist pulse is a maximum for saccades of all sizes and only the duration of the agonist pulse affects the size of the saccade. The antagonist muscle is completely inhibited during the period of maximum stimulation for the agonist muscle. Horizontal saccadic eye movements were recorded from infrared signals reflected from the anterior surface of the cornea and then digitized. Parameter estimates for the model were calculated by using a conjugate gradient search program which minimizes the integral of the absolute value of the squared error between the model and the data. The predictions of the model under a time-optimal controller are in good agreement with the data.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>3557482</pmid><doi>10.1109/TBME.1987.326014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 1987-01, Vol.BME-34 (1), p.43-55
issn 0018-9294
1558-2531
language eng
recordid cdi_pubmed_primary_3557482
source IEEE Xplore (Online service)
subjects Biological and medical sciences
Biological system modeling
Biomechanical Phenomena
Computerized, statistical medical data processing and models in biomedicine
Control systems
Cornea
Eye Movements
Humans
Low pass filters
Medical sciences
Models and simulation
Muscles
Oculomotor Muscles - physiology
Oculomotor Nerve - physiology
Parameter estimation
Predictive models
Saccades
System identification
Time Factors
Viscosity
title Time-Optimal Control of Saccadic Eye Movements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Optimal%20Control%20of%20Saccadic%20Eye%20Movements&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Enderle,%20John%20D.&rft.date=1987-01&rft.volume=BME-34&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.1987.326014&rft_dat=%3Cproquest_pubme%3E77440527%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-b2bfe806c49f2e578bb5696366a95b7571b7273306b46c999be421f5642eb8da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=77440527&rft_id=info:pmid/3557482&rft_ieee_id=4122432&rfr_iscdi=true