Loading…
Excited state lifetime modulation in semiconductor nanocrystals for super-resolution imaging
We report on proof of principle measurements of a concept for a super-resolution imaging method that is based on excitation field density-dependent lifetime modulation of semiconductor nanocrystals. The prerequisite of the technique is access to semiconductor nanocrystals with emission lifetimes tha...
Saved in:
Published in: | Nanotechnology 2022-09, Vol.33 (36), p.365201 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on proof of principle measurements of a concept for a super-resolution imaging method that is based on excitation field density-dependent lifetime modulation of semiconductor nanocrystals. The prerequisite of the technique is access to semiconductor nanocrystals with emission lifetimes that depend on the excitation intensity. Experimentally, the method requires a confocal microscope with fluorescence-lifetime measurement capability that makes it easily accessible to a broad optical imaging community. We demonstrate with single particle imaging that the method allows one to achieve a spatial resolution of the order of several tens of nanometers at moderate fluorescence excitation intensity. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ac73a2 |