Loading…

Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks

The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-05, Vol.27 (11)
Main Authors: Raptis, Dionysios, Livas, Charalampos, Stavroglou, George, Giappa, Rafaela Maria, Tylianakis, Emmanuel, Stergiannakos, Taxiarchis, Froudakis, George E
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Raptis, Dionysios
Livas, Charalampos
Stavroglou, George
Giappa, Rafaela Maria
Tylianakis, Emmanuel
Stergiannakos, Taxiarchis
Froudakis, George E
description The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO molecules. Among the functional groups considered, the highest interaction energy with NO (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO interactions (-OSO H, -PO H , -OPO H ) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO uptake performance not only in MOFs but also in various other porous materials.
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35684386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35684386</sourcerecordid><originalsourceid>FETCH-pubmed_primary_356843863</originalsourceid><addsrcrecordid>eNqFzr0OgjAUQOHGxAj-vIK5L0ACFAjOBOKCDriTaylYhZZcSgxv76Kz01m-4ayYG0Sh73E_OjlsO01P3w-DKIg3zOFxkkY8TVxWVTO1KCSUplGtEmiV0VBZQiu7BVpDkOsHaiEbuFwhhAxHO5MEpaGUFnvvSh1qJaAgHOTb0Gvas3WL_SQP3-7Yschv2dkb5_sgm3okNSAt9e-C_wUfHZU8pQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</creator><creatorcontrib>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</creatorcontrib><description>The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO molecules. Among the functional groups considered, the highest interaction energy with NO (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO interactions (-OSO H, -PO H , -OPO H ) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO uptake performance not only in MOFs but also in various other porous materials.</description><identifier>EISSN: 1420-3049</identifier><identifier>PMID: 35684386</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Molecules (Basel, Switzerland), 2022-05, Vol.27 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6907-1822 ; 0000-0002-1747-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35684386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raptis, Dionysios</creatorcontrib><creatorcontrib>Livas, Charalampos</creatorcontrib><creatorcontrib>Stavroglou, George</creatorcontrib><creatorcontrib>Giappa, Rafaela Maria</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO molecules. Among the functional groups considered, the highest interaction energy with NO (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO interactions (-OSO H, -PO H , -OPO H ) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO uptake performance not only in MOFs but also in various other porous materials.</description><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFzr0OgjAUQOHGxAj-vIK5L0ACFAjOBOKCDriTaylYhZZcSgxv76Kz01m-4ayYG0Sh73E_OjlsO01P3w-DKIg3zOFxkkY8TVxWVTO1KCSUplGtEmiV0VBZQiu7BVpDkOsHaiEbuFwhhAxHO5MEpaGUFnvvSh1qJaAgHOTb0Gvas3WL_SQP3-7Yschv2dkb5_sgm3okNSAt9e-C_wUfHZU8pQ</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Raptis, Dionysios</creator><creator>Livas, Charalampos</creator><creator>Stavroglou, George</creator><creator>Giappa, Rafaela Maria</creator><creator>Tylianakis, Emmanuel</creator><creator>Stergiannakos, Taxiarchis</creator><creator>Froudakis, George E</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-6907-1822</orcidid><orcidid>https://orcid.org/0000-0002-1747-2106</orcidid></search><sort><creationdate>20220526</creationdate><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><author>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_356843863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raptis, Dionysios</creatorcontrib><creatorcontrib>Livas, Charalampos</creatorcontrib><creatorcontrib>Stavroglou, George</creatorcontrib><creatorcontrib>Giappa, Rafaela Maria</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><collection>PubMed</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raptis, Dionysios</au><au>Livas, Charalampos</au><au>Stavroglou, George</au><au>Giappa, Rafaela Maria</au><au>Tylianakis, Emmanuel</au><au>Stergiannakos, Taxiarchis</au><au>Froudakis, George E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-05-26</date><risdate>2022</risdate><volume>27</volume><issue>11</issue><eissn>1420-3049</eissn><abstract>The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO molecules. Among the functional groups considered, the highest interaction energy with NO (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO interactions (-OSO H, -PO H , -OPO H ) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO uptake performance not only in MOFs but also in various other porous materials.</abstract><cop>Switzerland</cop><pmid>35684386</pmid><orcidid>https://orcid.org/0000-0002-6907-1822</orcidid><orcidid>https://orcid.org/0000-0002-1747-2106</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-05, Vol.27 (11)
issn 1420-3049
language eng
recordid cdi_pubmed_primary_35684386
source Publicly Available Content (ProQuest); PubMed Central
title Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Modification%20Strategy%20for%20Enhanced%20NO%202%20Capture%20in%20Metal-Organic%20Frameworks&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Raptis,%20Dionysios&rft.date=2022-05-26&rft.volume=27&rft.issue=11&rft.eissn=1420-3049&rft_id=info:doi/&rft_dat=%3Cpubmed%3E35684386%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_356843863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35684386&rfr_iscdi=true