Loading…
Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks
The interaction strength of nitrogen dioxide (NO ) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-05, Vol.27 (11) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Raptis, Dionysios Livas, Charalampos Stavroglou, George Giappa, Rafaela Maria Tylianakis, Emmanuel Stergiannakos, Taxiarchis Froudakis, George E |
description | The interaction strength of nitrogen dioxide (NO
) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO
molecules. Among the functional groups considered, the highest interaction energy with NO
(5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO
H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO
interactions (-OSO
H, -PO
H
, -OPO
H
) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO
uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO
uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO
uptake performance not only in MOFs but also in various other porous materials. |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35684386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35684386</sourcerecordid><originalsourceid>FETCH-pubmed_primary_356843863</originalsourceid><addsrcrecordid>eNqFzr0OgjAUQOHGxAj-vIK5L0ACFAjOBOKCDriTaylYhZZcSgxv76Kz01m-4ayYG0Sh73E_OjlsO01P3w-DKIg3zOFxkkY8TVxWVTO1KCSUplGtEmiV0VBZQiu7BVpDkOsHaiEbuFwhhAxHO5MEpaGUFnvvSh1qJaAgHOTb0Gvas3WL_SQP3-7Yschv2dkb5_sgm3okNSAt9e-C_wUfHZU8pQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</creator><creatorcontrib>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</creatorcontrib><description>The interaction strength of nitrogen dioxide (NO
) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO
molecules. Among the functional groups considered, the highest interaction energy with NO
(5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO
H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO
interactions (-OSO
H, -PO
H
, -OPO
H
) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO
uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO
uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO
uptake performance not only in MOFs but also in various other porous materials.</description><identifier>EISSN: 1420-3049</identifier><identifier>PMID: 35684386</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Molecules (Basel, Switzerland), 2022-05, Vol.27 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6907-1822 ; 0000-0002-1747-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35684386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raptis, Dionysios</creatorcontrib><creatorcontrib>Livas, Charalampos</creatorcontrib><creatorcontrib>Stavroglou, George</creatorcontrib><creatorcontrib>Giappa, Rafaela Maria</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>The interaction strength of nitrogen dioxide (NO
) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO
molecules. Among the functional groups considered, the highest interaction energy with NO
(5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO
H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO
interactions (-OSO
H, -PO
H
, -OPO
H
) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO
uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO
uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO
uptake performance not only in MOFs but also in various other porous materials.</description><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFzr0OgjAUQOHGxAj-vIK5L0ACFAjOBOKCDriTaylYhZZcSgxv76Kz01m-4ayYG0Sh73E_OjlsO01P3w-DKIg3zOFxkkY8TVxWVTO1KCSUplGtEmiV0VBZQiu7BVpDkOsHaiEbuFwhhAxHO5MEpaGUFnvvSh1qJaAgHOTb0Gvas3WL_SQP3-7Yschv2dkb5_sgm3okNSAt9e-C_wUfHZU8pQ</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Raptis, Dionysios</creator><creator>Livas, Charalampos</creator><creator>Stavroglou, George</creator><creator>Giappa, Rafaela Maria</creator><creator>Tylianakis, Emmanuel</creator><creator>Stergiannakos, Taxiarchis</creator><creator>Froudakis, George E</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-6907-1822</orcidid><orcidid>https://orcid.org/0000-0002-1747-2106</orcidid></search><sort><creationdate>20220526</creationdate><title>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</title><author>Raptis, Dionysios ; Livas, Charalampos ; Stavroglou, George ; Giappa, Rafaela Maria ; Tylianakis, Emmanuel ; Stergiannakos, Taxiarchis ; Froudakis, George E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_356843863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raptis, Dionysios</creatorcontrib><creatorcontrib>Livas, Charalampos</creatorcontrib><creatorcontrib>Stavroglou, George</creatorcontrib><creatorcontrib>Giappa, Rafaela Maria</creatorcontrib><creatorcontrib>Tylianakis, Emmanuel</creatorcontrib><creatorcontrib>Stergiannakos, Taxiarchis</creatorcontrib><creatorcontrib>Froudakis, George E</creatorcontrib><collection>PubMed</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raptis, Dionysios</au><au>Livas, Charalampos</au><au>Stavroglou, George</au><au>Giappa, Rafaela Maria</au><au>Tylianakis, Emmanuel</au><au>Stergiannakos, Taxiarchis</au><au>Froudakis, George E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-05-26</date><risdate>2022</risdate><volume>27</volume><issue>11</issue><eissn>1420-3049</eissn><abstract>The interaction strength of nitrogen dioxide (NO
) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO
molecules. Among the functional groups considered, the highest interaction energy with NO
(5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO
H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO
interactions (-OSO
H, -PO
H
, -OPO
H
) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO
uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO
uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO
uptake performance not only in MOFs but also in various other porous materials.</abstract><cop>Switzerland</cop><pmid>35684386</pmid><orcidid>https://orcid.org/0000-0002-6907-1822</orcidid><orcidid>https://orcid.org/0000-0002-1747-2106</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-05, Vol.27 (11) |
issn | 1420-3049 |
language | eng |
recordid | cdi_pubmed_primary_35684386 |
source | Publicly Available Content (ProQuest); PubMed Central |
title | Surface Modification Strategy for Enhanced NO 2 Capture in Metal-Organic Frameworks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Modification%20Strategy%20for%20Enhanced%20NO%202%20Capture%20in%20Metal-Organic%20Frameworks&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Raptis,%20Dionysios&rft.date=2022-05-26&rft.volume=27&rft.issue=11&rft.eissn=1420-3049&rft_id=info:doi/&rft_dat=%3Cpubmed%3E35684386%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_356843863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/35684386&rfr_iscdi=true |