Loading…

Vectorial probing of electric and magnetic transitions in variable optical environments and vice-versa

We use europium doped single cristalline NaYF$_4$ nanorods for probing the electric and magnetic contributions to the local density of optical states (LDOS). Reciprocically, we determine intrinsic properties of the emitters (oscillator strength, quantum yield) by comparing their measured and simulat...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2022-09, Vol.33 (38), p.385705
Main Authors: Chacon, Reinaldo, Leray, Aymeric, Kim, Jeongmo, Lahlil, Khalid, Bouhelier, Alexandre, Kim, Jong-Wook, Gacoin, Thierry, Colas des Francs, GĂ©rard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use europium doped single cristalline NaYF$_4$ nanorods for probing the electric and magnetic contributions to the local density of optical states (LDOS). Reciprocically, we determine intrinsic properties of the emitters (oscillator strength, quantum yield) by comparing their measured and simulated optical responses in front of a mirror. We first experimentally determine the specifications of the nanoprobe (orientation and oscillator strength of the electric and magnetic dipoles moments) and show significant orientation sensitivity of the branching ratios associated with electric and magnetic transitions. In a second part, we measure the modification of the LDOS in front of a gold mirror in a Drexhage's experiment. We discuss the role of the electric and magnetic LDOS on the basis of numerical simulations, taking into account the orientation of the dipolar emitters. We demonstrate that they behave like degenerated dipoles sensitive to polarized partial LDOS.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ac7884