Loading…
Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks
Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2022-12, Vol.26 (12), p.5930-5941 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3 |
container_end_page | 5941 |
container_issue | 12 |
container_start_page | 5930 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Pascual-Valdunciel, Alejandro Lopo-Martinez, Victor Sendra-Arranz, Rafael Gonzalez-Sanchez, Miguel Perez-Sanchez, Javier Ricardo Grandas, Francisco Torricelli, Diego Moreno, Juan C. Barroso, Filipe Oliveira Pons, Jose L. Gutierrez, Alvaro |
description | Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction. |
doi_str_mv | 10.1109/JBHI.2022.3209316 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36170410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904814</ieee_id><sourcerecordid>2747609535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</originalsourceid><addsrcrecordid>eNpdkFtPwjAYhhujEYL8AGNimnjjzbCnHXqpRAWDSAJ4u3TbNxhuFNsthn9vF8ALe9E27fO-yfcgdE3JgFIiH96eRuMBI4wNOCOS0-AMdRkNIo8xEp2f7lSKDupbuyFuRe5JBpeowwMaEkFJF33ODGRFWhd6i3WOZ6pe61KvilSVeGGg0gbPi9VWlRYvbbFd4Yl223ytTe0twFT4vWX2eAqNcZEp1D_afNkrdJG7DPSPZw8tX54Xw5E3-XgdDx8nXsolqz2e5mGW-NIXuRsp8mkEJMhJ5oMfCSmpYpHIciVDSICFScDSJCBS-JTkyg2jeA_dH3p3Rn83YOu4KmwKZam2oBsbs9AJcHqk79C7f-hGN6adzFEidL0-byl6oFKjrTWQxztTVMrsY0ri1nvceo9b7_HRu8vcHpubpILsL3Gy7ICbA1AAwN-3lEREVPBfsEmE3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609535</pqid></control><display><type>article</type><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</creator><creatorcontrib>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</creatorcontrib><description>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3209316</identifier><identifier>PMID: 36170410</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological neural networks ; Closed loops ; Data processing ; Electrical stimulation ; Electrical stimuli ; Electromyography ; Error analysis ; essential tremor ; Feedback control ; Horizon ; Humans ; Kinematics ; Long short term memory ; LSTM ; Machine learning ; Mathematical models ; Memory, Short-Term ; Neural networks ; Neural Networks, Computer ; Parameters ; peripheral electrical stimulation ; Predictions ; Reduction ; Robust control ; Signal processing ; Stimulation ; Tremor ; Tremor (Muscular contraction) ; Tremor - diagnosis ; tremor prediction ; Tremors ; Wrist</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-12, Vol.26 (12), p.5930-5941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</citedby><cites>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</cites><orcidid>0000-0002-7984-7516 ; 0000-0001-5076-5077 ; 0000-0003-2746-8677 ; 0000-0003-0265-0181 ; 0000-0001-9561-7764 ; 0000-0001-9292-9471 ; 0000-0001-8767-3395 ; 0000-0002-7656-9354 ; 0000-0003-0228-6447 ; 0000-0001-8926-5328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904814$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36170410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascual-Valdunciel, Alejandro</creatorcontrib><creatorcontrib>Lopo-Martinez, Victor</creatorcontrib><creatorcontrib>Sendra-Arranz, Rafael</creatorcontrib><creatorcontrib>Gonzalez-Sanchez, Miguel</creatorcontrib><creatorcontrib>Perez-Sanchez, Javier Ricardo</creatorcontrib><creatorcontrib>Grandas, Francisco</creatorcontrib><creatorcontrib>Torricelli, Diego</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><creatorcontrib>Barroso, Filipe Oliveira</creatorcontrib><creatorcontrib>Pons, Jose L.</creatorcontrib><creatorcontrib>Gutierrez, Alvaro</creatorcontrib><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</description><subject>Biological neural networks</subject><subject>Closed loops</subject><subject>Data processing</subject><subject>Electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Electromyography</subject><subject>Error analysis</subject><subject>essential tremor</subject><subject>Feedback control</subject><subject>Horizon</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Long short term memory</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Memory, Short-Term</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameters</subject><subject>peripheral electrical stimulation</subject><subject>Predictions</subject><subject>Reduction</subject><subject>Robust control</subject><subject>Signal processing</subject><subject>Stimulation</subject><subject>Tremor</subject><subject>Tremor (Muscular contraction)</subject><subject>Tremor - diagnosis</subject><subject>tremor prediction</subject><subject>Tremors</subject><subject>Wrist</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkFtPwjAYhhujEYL8AGNimnjjzbCnHXqpRAWDSAJ4u3TbNxhuFNsthn9vF8ALe9E27fO-yfcgdE3JgFIiH96eRuMBI4wNOCOS0-AMdRkNIo8xEp2f7lSKDupbuyFuRe5JBpeowwMaEkFJF33ODGRFWhd6i3WOZ6pe61KvilSVeGGg0gbPi9VWlRYvbbFd4Yl223ytTe0twFT4vWX2eAqNcZEp1D_afNkrdJG7DPSPZw8tX54Xw5E3-XgdDx8nXsolqz2e5mGW-NIXuRsp8mkEJMhJ5oMfCSmpYpHIciVDSICFScDSJCBS-JTkyg2jeA_dH3p3Rn83YOu4KmwKZam2oBsbs9AJcHqk79C7f-hGN6adzFEidL0-byl6oFKjrTWQxztTVMrsY0ri1nvceo9b7_HRu8vcHpubpILsL3Gy7ICbA1AAwN-3lEREVPBfsEmE3A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pascual-Valdunciel, Alejandro</creator><creator>Lopo-Martinez, Victor</creator><creator>Sendra-Arranz, Rafael</creator><creator>Gonzalez-Sanchez, Miguel</creator><creator>Perez-Sanchez, Javier Ricardo</creator><creator>Grandas, Francisco</creator><creator>Torricelli, Diego</creator><creator>Moreno, Juan C.</creator><creator>Barroso, Filipe Oliveira</creator><creator>Pons, Jose L.</creator><creator>Gutierrez, Alvaro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7984-7516</orcidid><orcidid>https://orcid.org/0000-0001-5076-5077</orcidid><orcidid>https://orcid.org/0000-0003-2746-8677</orcidid><orcidid>https://orcid.org/0000-0003-0265-0181</orcidid><orcidid>https://orcid.org/0000-0001-9561-7764</orcidid><orcidid>https://orcid.org/0000-0001-9292-9471</orcidid><orcidid>https://orcid.org/0000-0001-8767-3395</orcidid><orcidid>https://orcid.org/0000-0002-7656-9354</orcidid><orcidid>https://orcid.org/0000-0003-0228-6447</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid></search><sort><creationdate>20221201</creationdate><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><author>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological neural networks</topic><topic>Closed loops</topic><topic>Data processing</topic><topic>Electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Electromyography</topic><topic>Error analysis</topic><topic>essential tremor</topic><topic>Feedback control</topic><topic>Horizon</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Long short term memory</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Memory, Short-Term</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameters</topic><topic>peripheral electrical stimulation</topic><topic>Predictions</topic><topic>Reduction</topic><topic>Robust control</topic><topic>Signal processing</topic><topic>Stimulation</topic><topic>Tremor</topic><topic>Tremor (Muscular contraction)</topic><topic>Tremor - diagnosis</topic><topic>tremor prediction</topic><topic>Tremors</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual-Valdunciel, Alejandro</creatorcontrib><creatorcontrib>Lopo-Martinez, Victor</creatorcontrib><creatorcontrib>Sendra-Arranz, Rafael</creatorcontrib><creatorcontrib>Gonzalez-Sanchez, Miguel</creatorcontrib><creatorcontrib>Perez-Sanchez, Javier Ricardo</creatorcontrib><creatorcontrib>Grandas, Francisco</creatorcontrib><creatorcontrib>Torricelli, Diego</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><creatorcontrib>Barroso, Filipe Oliveira</creatorcontrib><creatorcontrib>Pons, Jose L.</creatorcontrib><creatorcontrib>Gutierrez, Alvaro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual-Valdunciel, Alejandro</au><au>Lopo-Martinez, Victor</au><au>Sendra-Arranz, Rafael</au><au>Gonzalez-Sanchez, Miguel</au><au>Perez-Sanchez, Javier Ricardo</au><au>Grandas, Francisco</au><au>Torricelli, Diego</au><au>Moreno, Juan C.</au><au>Barroso, Filipe Oliveira</au><au>Pons, Jose L.</au><au>Gutierrez, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>12</issue><spage>5930</spage><epage>5941</epage><pages>5930-5941</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36170410</pmid><doi>10.1109/JBHI.2022.3209316</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7984-7516</orcidid><orcidid>https://orcid.org/0000-0001-5076-5077</orcidid><orcidid>https://orcid.org/0000-0003-2746-8677</orcidid><orcidid>https://orcid.org/0000-0003-0265-0181</orcidid><orcidid>https://orcid.org/0000-0001-9561-7764</orcidid><orcidid>https://orcid.org/0000-0001-9292-9471</orcidid><orcidid>https://orcid.org/0000-0001-8767-3395</orcidid><orcidid>https://orcid.org/0000-0002-7656-9354</orcidid><orcidid>https://orcid.org/0000-0003-0228-6447</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-12, Vol.26 (12), p.5930-5941 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_36170410 |
source | IEEE Xplore (Online service) |
subjects | Biological neural networks Closed loops Data processing Electrical stimulation Electrical stimuli Electromyography Error analysis essential tremor Feedback control Horizon Humans Kinematics Long short term memory LSTM Machine learning Mathematical models Memory, Short-Term Neural networks Neural Networks, Computer Parameters peripheral electrical stimulation Predictions Reduction Robust control Signal processing Stimulation Tremor Tremor (Muscular contraction) Tremor - diagnosis tremor prediction Tremors Wrist |
title | Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Pathological%20Tremor%20Signals%20Using%20Long%20Short-Term%20Memory%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Pascual-Valdunciel,%20Alejandro&rft.date=2022-12-01&rft.volume=26&rft.issue=12&rft.spage=5930&rft.epage=5941&rft.pages=5930-5941&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3209316&rft_dat=%3Cproquest_pubme%3E2747609535%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609535&rft_id=info:pmid/36170410&rft_ieee_id=9904814&rfr_iscdi=true |