Loading…

Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks

Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2022-12, Vol.26 (12), p.5930-5941
Main Authors: Pascual-Valdunciel, Alejandro, Lopo-Martinez, Victor, Sendra-Arranz, Rafael, Gonzalez-Sanchez, Miguel, Perez-Sanchez, Javier Ricardo, Grandas, Francisco, Torricelli, Diego, Moreno, Juan C., Barroso, Filipe Oliveira, Pons, Jose L., Gutierrez, Alvaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3
cites cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3
container_end_page 5941
container_issue 12
container_start_page 5930
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Pascual-Valdunciel, Alejandro
Lopo-Martinez, Victor
Sendra-Arranz, Rafael
Gonzalez-Sanchez, Miguel
Perez-Sanchez, Javier Ricardo
Grandas, Francisco
Torricelli, Diego
Moreno, Juan C.
Barroso, Filipe Oliveira
Pons, Jose L.
Gutierrez, Alvaro
description Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.
doi_str_mv 10.1109/JBHI.2022.3209316
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36170410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9904814</ieee_id><sourcerecordid>2747609535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</originalsourceid><addsrcrecordid>eNpdkFtPwjAYhhujEYL8AGNimnjjzbCnHXqpRAWDSAJ4u3TbNxhuFNsthn9vF8ALe9E27fO-yfcgdE3JgFIiH96eRuMBI4wNOCOS0-AMdRkNIo8xEp2f7lSKDupbuyFuRe5JBpeowwMaEkFJF33ODGRFWhd6i3WOZ6pe61KvilSVeGGg0gbPi9VWlRYvbbFd4Yl223ytTe0twFT4vWX2eAqNcZEp1D_afNkrdJG7DPSPZw8tX54Xw5E3-XgdDx8nXsolqz2e5mGW-NIXuRsp8mkEJMhJ5oMfCSmpYpHIciVDSICFScDSJCBS-JTkyg2jeA_dH3p3Rn83YOu4KmwKZam2oBsbs9AJcHqk79C7f-hGN6adzFEidL0-byl6oFKjrTWQxztTVMrsY0ri1nvceo9b7_HRu8vcHpubpILsL3Gy7ICbA1AAwN-3lEREVPBfsEmE3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747609535</pqid></control><display><type>article</type><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</creator><creatorcontrib>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</creatorcontrib><description>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3209316</identifier><identifier>PMID: 36170410</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological neural networks ; Closed loops ; Data processing ; Electrical stimulation ; Electrical stimuli ; Electromyography ; Error analysis ; essential tremor ; Feedback control ; Horizon ; Humans ; Kinematics ; Long short term memory ; LSTM ; Machine learning ; Mathematical models ; Memory, Short-Term ; Neural networks ; Neural Networks, Computer ; Parameters ; peripheral electrical stimulation ; Predictions ; Reduction ; Robust control ; Signal processing ; Stimulation ; Tremor ; Tremor (Muscular contraction) ; Tremor - diagnosis ; tremor prediction ; Tremors ; Wrist</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-12, Vol.26 (12), p.5930-5941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</citedby><cites>FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</cites><orcidid>0000-0002-7984-7516 ; 0000-0001-5076-5077 ; 0000-0003-2746-8677 ; 0000-0003-0265-0181 ; 0000-0001-9561-7764 ; 0000-0001-9292-9471 ; 0000-0001-8767-3395 ; 0000-0002-7656-9354 ; 0000-0003-0228-6447 ; 0000-0001-8926-5328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9904814$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36170410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascual-Valdunciel, Alejandro</creatorcontrib><creatorcontrib>Lopo-Martinez, Victor</creatorcontrib><creatorcontrib>Sendra-Arranz, Rafael</creatorcontrib><creatorcontrib>Gonzalez-Sanchez, Miguel</creatorcontrib><creatorcontrib>Perez-Sanchez, Javier Ricardo</creatorcontrib><creatorcontrib>Grandas, Francisco</creatorcontrib><creatorcontrib>Torricelli, Diego</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><creatorcontrib>Barroso, Filipe Oliveira</creatorcontrib><creatorcontrib>Pons, Jose L.</creatorcontrib><creatorcontrib>Gutierrez, Alvaro</creatorcontrib><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</description><subject>Biological neural networks</subject><subject>Closed loops</subject><subject>Data processing</subject><subject>Electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Electromyography</subject><subject>Error analysis</subject><subject>essential tremor</subject><subject>Feedback control</subject><subject>Horizon</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Long short term memory</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Memory, Short-Term</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameters</subject><subject>peripheral electrical stimulation</subject><subject>Predictions</subject><subject>Reduction</subject><subject>Robust control</subject><subject>Signal processing</subject><subject>Stimulation</subject><subject>Tremor</subject><subject>Tremor (Muscular contraction)</subject><subject>Tremor - diagnosis</subject><subject>tremor prediction</subject><subject>Tremors</subject><subject>Wrist</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkFtPwjAYhhujEYL8AGNimnjjzbCnHXqpRAWDSAJ4u3TbNxhuFNsthn9vF8ALe9E27fO-yfcgdE3JgFIiH96eRuMBI4wNOCOS0-AMdRkNIo8xEp2f7lSKDupbuyFuRe5JBpeowwMaEkFJF33ODGRFWhd6i3WOZ6pe61KvilSVeGGg0gbPi9VWlRYvbbFd4Yl223ytTe0twFT4vWX2eAqNcZEp1D_afNkrdJG7DPSPZw8tX54Xw5E3-XgdDx8nXsolqz2e5mGW-NIXuRsp8mkEJMhJ5oMfCSmpYpHIciVDSICFScDSJCBS-JTkyg2jeA_dH3p3Rn83YOu4KmwKZam2oBsbs9AJcHqk79C7f-hGN6adzFEidL0-byl6oFKjrTWQxztTVMrsY0ri1nvceo9b7_HRu8vcHpubpILsL3Gy7ICbA1AAwN-3lEREVPBfsEmE3A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pascual-Valdunciel, Alejandro</creator><creator>Lopo-Martinez, Victor</creator><creator>Sendra-Arranz, Rafael</creator><creator>Gonzalez-Sanchez, Miguel</creator><creator>Perez-Sanchez, Javier Ricardo</creator><creator>Grandas, Francisco</creator><creator>Torricelli, Diego</creator><creator>Moreno, Juan C.</creator><creator>Barroso, Filipe Oliveira</creator><creator>Pons, Jose L.</creator><creator>Gutierrez, Alvaro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7984-7516</orcidid><orcidid>https://orcid.org/0000-0001-5076-5077</orcidid><orcidid>https://orcid.org/0000-0003-2746-8677</orcidid><orcidid>https://orcid.org/0000-0003-0265-0181</orcidid><orcidid>https://orcid.org/0000-0001-9561-7764</orcidid><orcidid>https://orcid.org/0000-0001-9292-9471</orcidid><orcidid>https://orcid.org/0000-0001-8767-3395</orcidid><orcidid>https://orcid.org/0000-0002-7656-9354</orcidid><orcidid>https://orcid.org/0000-0003-0228-6447</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid></search><sort><creationdate>20221201</creationdate><title>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</title><author>Pascual-Valdunciel, Alejandro ; Lopo-Martinez, Victor ; Sendra-Arranz, Rafael ; Gonzalez-Sanchez, Miguel ; Perez-Sanchez, Javier Ricardo ; Grandas, Francisco ; Torricelli, Diego ; Moreno, Juan C. ; Barroso, Filipe Oliveira ; Pons, Jose L. ; Gutierrez, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological neural networks</topic><topic>Closed loops</topic><topic>Data processing</topic><topic>Electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Electromyography</topic><topic>Error analysis</topic><topic>essential tremor</topic><topic>Feedback control</topic><topic>Horizon</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Long short term memory</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Memory, Short-Term</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameters</topic><topic>peripheral electrical stimulation</topic><topic>Predictions</topic><topic>Reduction</topic><topic>Robust control</topic><topic>Signal processing</topic><topic>Stimulation</topic><topic>Tremor</topic><topic>Tremor (Muscular contraction)</topic><topic>Tremor - diagnosis</topic><topic>tremor prediction</topic><topic>Tremors</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual-Valdunciel, Alejandro</creatorcontrib><creatorcontrib>Lopo-Martinez, Victor</creatorcontrib><creatorcontrib>Sendra-Arranz, Rafael</creatorcontrib><creatorcontrib>Gonzalez-Sanchez, Miguel</creatorcontrib><creatorcontrib>Perez-Sanchez, Javier Ricardo</creatorcontrib><creatorcontrib>Grandas, Francisco</creatorcontrib><creatorcontrib>Torricelli, Diego</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><creatorcontrib>Barroso, Filipe Oliveira</creatorcontrib><creatorcontrib>Pons, Jose L.</creatorcontrib><creatorcontrib>Gutierrez, Alvaro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pascual-Valdunciel, Alejandro</au><au>Lopo-Martinez, Victor</au><au>Sendra-Arranz, Rafael</au><au>Gonzalez-Sanchez, Miguel</au><au>Perez-Sanchez, Javier Ricardo</au><au>Grandas, Francisco</au><au>Torricelli, Diego</au><au>Moreno, Juan C.</au><au>Barroso, Filipe Oliveira</au><au>Pons, Jose L.</au><au>Gutierrez, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>12</issue><spage>5930</spage><epage>5941</epage><pages>5930-5941</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32--56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36170410</pmid><doi>10.1109/JBHI.2022.3209316</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7984-7516</orcidid><orcidid>https://orcid.org/0000-0001-5076-5077</orcidid><orcidid>https://orcid.org/0000-0003-2746-8677</orcidid><orcidid>https://orcid.org/0000-0003-0265-0181</orcidid><orcidid>https://orcid.org/0000-0001-9561-7764</orcidid><orcidid>https://orcid.org/0000-0001-9292-9471</orcidid><orcidid>https://orcid.org/0000-0001-8767-3395</orcidid><orcidid>https://orcid.org/0000-0002-7656-9354</orcidid><orcidid>https://orcid.org/0000-0003-0228-6447</orcidid><orcidid>https://orcid.org/0000-0001-8926-5328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-12, Vol.26 (12), p.5930-5941
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_36170410
source IEEE Xplore (Online service)
subjects Biological neural networks
Closed loops
Data processing
Electrical stimulation
Electrical stimuli
Electromyography
Error analysis
essential tremor
Feedback control
Horizon
Humans
Kinematics
Long short term memory
LSTM
Machine learning
Mathematical models
Memory, Short-Term
Neural networks
Neural Networks, Computer
Parameters
peripheral electrical stimulation
Predictions
Reduction
Robust control
Signal processing
Stimulation
Tremor
Tremor (Muscular contraction)
Tremor - diagnosis
tremor prediction
Tremors
Wrist
title Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Pathological%20Tremor%20Signals%20Using%20Long%20Short-Term%20Memory%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Pascual-Valdunciel,%20Alejandro&rft.date=2022-12-01&rft.volume=26&rft.issue=12&rft.spage=5930&rft.epage=5941&rft.pages=5930-5941&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3209316&rft_dat=%3Cproquest_pubme%3E2747609535%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-3cf7db5954f1098518e06f0d5e584991a284dfa97ebe27b62cb6094510fa816a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747609535&rft_id=info:pmid/36170410&rft_ieee_id=9904814&rfr_iscdi=true