Loading…

Automated detection of schizophrenia using deep learning: a review for the last decade

Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for fe...

Full description

Saved in:
Bibliographic Details
Published in:Physiological measurement 2023-03, Vol.44 (3), p.3
Main Authors: Sharma, Manish, Patel, Ruchit Kumar, Garg, Akshat, SanTan, Ru, Acharya, U Rajendra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243
cites cdi_FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243
container_end_page
container_issue 3
container_start_page 3
container_title Physiological measurement
container_volume 44
creator Sharma, Manish
Patel, Ruchit Kumar
Garg, Akshat
SanTan, Ru
Acharya, U Rajendra
description Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, and model methodologies are reported in detail. In addition, the challenges of DL models for SZ diagnosis and future works are discussed.
doi_str_mv 10.1088/1361-6579/acb24d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36630717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765073431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243</originalsourceid><addsrcrecordid>eNp1kFFr20AMgI_Ssqbp3vc07rEP83Ky7Dt7byFsayFQKGlfD8WWFxfb593ZLduvr0PS7mVFD0Lik4Q-IT6B-goqyxaAGiKdmnxBxTZOyhMxe2udipnKtYkQMTkXFyE8KgWQxekHcY5aozJgZuJhOQ6upYFLWfLAxVC7TrpKhmJX_3X9znNXkxxD3f2aAO5lw-S7qfomSXp-qvlZVs7LYceyoTBMUEElX4qziprAH495Lu5_fN-srqP17c-b1XIdFajzIQKihFCnnG41xMromBXEWZ4gblmTjhFZg8pTQ6iwIshBGwN5WU2RxQnOxdVhb-_d75HDYNs6FNw01LEbg42NTpXBBGFC1QEtvAvBc2V7X7fk_1hQdm_T7tXZvTp7sDmNfD5uH7ctl28Dr_r-na9dbx_d6LvpWdu3TDZJLFqFmzsFti-rCf3yH_Td0y_jO4s2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765073431</pqid></control><display><type>article</type><title>Automated detection of schizophrenia using deep learning: a review for the last decade</title><source>Institute of Physics</source><creator>Sharma, Manish ; Patel, Ruchit Kumar ; Garg, Akshat ; SanTan, Ru ; Acharya, U Rajendra</creator><creatorcontrib>Sharma, Manish ; Patel, Ruchit Kumar ; Garg, Akshat ; SanTan, Ru ; Acharya, U Rajendra</creatorcontrib><description>Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, and model methodologies are reported in detail. In addition, the challenges of DL models for SZ diagnosis and future works are discussed.</description><identifier>ISSN: 0967-3334</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/acb24d</identifier><identifier>PMID: 36630717</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>convolutional neural networks ; Deep Learning ; electroencephalography (EEG) ; Electroencephalography - methods ; functional magnetic resonance imaging ; Humans ; long short-term memory ; Machine Learning ; Neural Networks, Computer ; schizophrenia ; Schizophrenia - diagnostic imaging</subject><ispartof>Physiological measurement, 2023-03, Vol.44 (3), p.3</ispartof><rights>2023 Institute of Physics and Engineering in Medicine</rights><rights>2023 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243</citedby><cites>FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243</cites><orcidid>0000-0003-2689-8552 ; 0000-0002-2266-5332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36630717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Manish</creatorcontrib><creatorcontrib>Patel, Ruchit Kumar</creatorcontrib><creatorcontrib>Garg, Akshat</creatorcontrib><creatorcontrib>SanTan, Ru</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><title>Automated detection of schizophrenia using deep learning: a review for the last decade</title><title>Physiological measurement</title><addtitle>PMEA</addtitle><addtitle>Physiol. Meas</addtitle><description>Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, and model methodologies are reported in detail. In addition, the challenges of DL models for SZ diagnosis and future works are discussed.</description><subject>convolutional neural networks</subject><subject>Deep Learning</subject><subject>electroencephalography (EEG)</subject><subject>Electroencephalography - methods</subject><subject>functional magnetic resonance imaging</subject><subject>Humans</subject><subject>long short-term memory</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><issn>0967-3334</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kFFr20AMgI_Ssqbp3vc07rEP83Ky7Dt7byFsayFQKGlfD8WWFxfb593ZLduvr0PS7mVFD0Lik4Q-IT6B-goqyxaAGiKdmnxBxTZOyhMxe2udipnKtYkQMTkXFyE8KgWQxekHcY5aozJgZuJhOQ6upYFLWfLAxVC7TrpKhmJX_3X9znNXkxxD3f2aAO5lw-S7qfomSXp-qvlZVs7LYceyoTBMUEElX4qziprAH495Lu5_fN-srqP17c-b1XIdFajzIQKihFCnnG41xMromBXEWZ4gblmTjhFZg8pTQ6iwIshBGwN5WU2RxQnOxdVhb-_d75HDYNs6FNw01LEbg42NTpXBBGFC1QEtvAvBc2V7X7fk_1hQdm_T7tXZvTp7sDmNfD5uH7ctl28Dr_r-na9dbx_d6LvpWdu3TDZJLFqFmzsFti-rCf3yH_Td0y_jO4s2</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Sharma, Manish</creator><creator>Patel, Ruchit Kumar</creator><creator>Garg, Akshat</creator><creator>SanTan, Ru</creator><creator>Acharya, U Rajendra</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2689-8552</orcidid><orcidid>https://orcid.org/0000-0002-2266-5332</orcidid></search><sort><creationdate>20230306</creationdate><title>Automated detection of schizophrenia using deep learning: a review for the last decade</title><author>Sharma, Manish ; Patel, Ruchit Kumar ; Garg, Akshat ; SanTan, Ru ; Acharya, U Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>convolutional neural networks</topic><topic>Deep Learning</topic><topic>electroencephalography (EEG)</topic><topic>Electroencephalography - methods</topic><topic>functional magnetic resonance imaging</topic><topic>Humans</topic><topic>long short-term memory</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Manish</creatorcontrib><creatorcontrib>Patel, Ruchit Kumar</creatorcontrib><creatorcontrib>Garg, Akshat</creatorcontrib><creatorcontrib>SanTan, Ru</creatorcontrib><creatorcontrib>Acharya, U Rajendra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Manish</au><au>Patel, Ruchit Kumar</au><au>Garg, Akshat</au><au>SanTan, Ru</au><au>Acharya, U Rajendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of schizophrenia using deep learning: a review for the last decade</atitle><jtitle>Physiological measurement</jtitle><stitle>PMEA</stitle><addtitle>Physiol. Meas</addtitle><date>2023-03-06</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>3</spage><pages>3-</pages><issn>0967-3334</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>Schizophrenia (SZ) is a devastating mental disorder that disrupts higher brain functions like thought, perception, etc., with a profound impact on the individual's life. Deep learning (DL) can detect SZ automatically by learning signal data characteristics hierarchically without the need for feature engineering associated with traditional machine learning. We performed a systematic review of DL models for SZ detection. Various deep models like long short-term memory, convolution neural networks, AlexNet, etc., and composite methods have been published based on electroencephalographic signals, and structural and/or functional magnetic resonance imaging acquired from SZ patients and healthy patients control subjects in diverse public and private datasets. The studies, the study datasets, and model methodologies are reported in detail. In addition, the challenges of DL models for SZ diagnosis and future works are discussed.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36630717</pmid><doi>10.1088/1361-6579/acb24d</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2689-8552</orcidid><orcidid>https://orcid.org/0000-0002-2266-5332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0967-3334
ispartof Physiological measurement, 2023-03, Vol.44 (3), p.3
issn 0967-3334
1361-6579
language eng
recordid cdi_pubmed_primary_36630717
source Institute of Physics
subjects convolutional neural networks
Deep Learning
electroencephalography (EEG)
Electroencephalography - methods
functional magnetic resonance imaging
Humans
long short-term memory
Machine Learning
Neural Networks, Computer
schizophrenia
Schizophrenia - diagnostic imaging
title Automated detection of schizophrenia using deep learning: a review for the last decade
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20schizophrenia%20using%20deep%20learning:%20a%20review%20for%20the%20last%20decade&rft.jtitle=Physiological%20measurement&rft.au=Sharma,%20Manish&rft.date=2023-03-06&rft.volume=44&rft.issue=3&rft.spage=3&rft.pages=3-&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/acb24d&rft_dat=%3Cproquest_pubme%3E2765073431%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-1aa4a365e5b6120762e01289433be6a6233e610957a303fa19167719dfdfd8243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2765073431&rft_id=info:pmid/36630717&rfr_iscdi=true