Loading…
Stable In-Planta Transformation System For Egyptian Sesame (Sesamum indicum L.) cv. Sohag 1
Sesame (Sesamum indicum L.) is an important oil crop and one of the oldest-known oil crops to humankind. Sesame has excellent nutritional and therapeutic properties; it is rich in important fatty acids, protein, fiber, and vital minerals. Oil percentage varies among different genotypes but generally...
Saved in:
Published in: | GM crops & food 2023-12, Vol.14 (1), p.1-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sesame (Sesamum indicum L.) is an important oil crop and one of the oldest-known oil crops to humankind. Sesame has excellent nutritional and therapeutic properties; it is rich in important fatty acids, protein, fiber, and vital minerals. Oil percentage varies among different genotypes but generally accounts for more than 50% of the seed's dry weight. To meet the increasing demand for vegetable oil production worldwide, expanding the cultivation of oil crops in newly reclaimed areas worldwide is essential. Molecular breeding is an expeditious approach for varietal improvement but requires efficient transgenesis. Published sesame transformation methods are highly genus-specific, tedious, and involve preparing and testing different media and explants. We produced transgenic sesame plants using a stable, noninvasive, and robust Agrobacterium tumefaciens transformation method. Leaves and flowers excised from the T
0
plants at different developmental stages were PCR screened, and 61/93 seedlings were found to be PCR positive. T
1
seeds resulting from two lines were germinated in a biocontainment greenhouse facility and screened using PCR, basta leaf painting, and spraying fully matured plants with basta herbicide (0.02 mg/l); non-transgenic segregants and control non-transgenic plants were severely damaged, and eventually died, while transgenic plants were not affected by the Basta spraying. RT-PCR on T1 plants indicated the presence of Bar transcripts in T
1
progeny. Furthermore, RT-PCR using NPTII primers did not result in any amplification in transgenic sesame plants (NPTII is present in the vector but not in the T-DNA region) indicating that the transgenic sesame plants were not an Agrobacterium-contaminant. |
---|---|
ISSN: | 2164-5698 2164-5701 |
DOI: | 10.1080/21645698.2022.2150041 |