Loading…
Versatile nanodiamond-based tools for therapeutics and bioimaging
Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity t...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2023-02, Vol.59 (15), p.239-255 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV
−
) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The
in vitro
and
in vivo
biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.
In this feature article, properties of nanodiamonds in photophysics, surface modification and biocompatibility are discussed, followed by their applications in therapy and bioimaging. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d2cc06495b |