Loading…

Magnetic-field-dependent spin properties of divacancy defects in silicon carbide

In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known ab...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-03, Vol.15 (11), p.53-534
Main Authors: Yan, Fei-Fei, Wang, Jun-Feng, He, Zhen-Xuan, Li, Qiang, Lin, Wu-Xi, Zhou, Ji-Yang, Xu, Jin-Shi, Li, Chuan-Feng, Guo, Guang-Can
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3
cites cdi_FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3
container_end_page 534
container_issue 11
container_start_page 53
container_title Nanoscale
container_volume 15
creator Yan, Fei-Fei
Wang, Jun-Feng
He, Zhen-Xuan
Li, Qiang
Lin, Wu-Xi
Zhou, Ji-Yang
Xu, Jin-Shi
Li, Chuan-Feng
Guo, Guang-Can
description In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties. Here, we investigate the optically detected magnetic resonance (ODMR) spectra of divacancy spins in silicon carbide with a magnetic field orientation. The ODMR contrast decreases as the off-axis magnetic field strength increases. We then study the coherence times of divacancy spins in two different samples with magnetic field angles, and both of the coherence times decrease with the angle. The experiments pave the way for all-optical magnetic field sensing and quantum information processing. We investigate the optically detected magnetic resonance (ODMR) spectra and coherence times of divacancy spins in silicon carbide with a magnetic field orientation. Both the ODMR contrast and coherence time decrease with the magnetic field angle.
doi_str_mv 10.1039/d2nr06624f
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36810581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787226832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3</originalsourceid><addsrcrecordid>eNpd0U1LJDEQBuAgLn6tF-9KgxcRes1XV6ePoo4rzKqInpt0UpFIT7pNehb892YdnQVPKchDUfUWIQeM_mJUNGeWh0gBuHQbZIdTSUshar65rkFuk92UXiiFRoDYItsCFKOVYjvk_o9-Djh5UzqPvS0tjhgshqlIow_FGIcR4-QxFYMrrP-rjQ7mrbDo0EypyCT53pshFEbHzlv8SX443Sfc_3z3yNPs6vHidzm_u765OJ-XRtRqKhk61zXcaqBMA4KCjlXSNYaj7lCDZqCs4lwbACErqfJGlbNdB0bSWqLYIyervnnE1yWmqV34ZLDvdcBhmVpe142QUMk60-Nv9GVYxpCny0rVnIMSPKvTlTJxSCmia8foFzq-tYy2_3JuL_ntw0fOs4yPPlsuuwXaNf0KNoPDFYjJrH__H0q8A1Kjgdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787226832</pqid></control><display><type>article</type><title>Magnetic-field-dependent spin properties of divacancy defects in silicon carbide</title><source>Royal Society of Chemistry</source><creator>Yan, Fei-Fei ; Wang, Jun-Feng ; He, Zhen-Xuan ; Li, Qiang ; Lin, Wu-Xi ; Zhou, Ji-Yang ; Xu, Jin-Shi ; Li, Chuan-Feng ; Guo, Guang-Can</creator><creatorcontrib>Yan, Fei-Fei ; Wang, Jun-Feng ; He, Zhen-Xuan ; Li, Qiang ; Lin, Wu-Xi ; Zhou, Ji-Yang ; Xu, Jin-Shi ; Li, Chuan-Feng ; Guo, Guang-Can</creatorcontrib><description>In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties. Here, we investigate the optically detected magnetic resonance (ODMR) spectra of divacancy spins in silicon carbide with a magnetic field orientation. The ODMR contrast decreases as the off-axis magnetic field strength increases. We then study the coherence times of divacancy spins in two different samples with magnetic field angles, and both of the coherence times decrease with the angle. The experiments pave the way for all-optical magnetic field sensing and quantum information processing. We investigate the optically detected magnetic resonance (ODMR) spectra and coherence times of divacancy spins in silicon carbide with a magnetic field orientation. Both the ODMR contrast and coherence time decrease with the magnetic field angle.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr06624f</identifier><identifier>PMID: 36810581</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Coherence ; Data processing ; Defects ; Divacancies ; Field strength ; Magnetic fields ; Magnetic properties ; Magnetic resonance ; Quantum phenomena ; Silicon carbide</subject><ispartof>Nanoscale, 2023-03, Vol.15 (11), p.53-534</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3</citedby><cites>FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3</cites><orcidid>0000-0003-0528-1000 ; 0000-0001-5681-3359 ; 0000-0001-6815-8929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36810581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Fei-Fei</creatorcontrib><creatorcontrib>Wang, Jun-Feng</creatorcontrib><creatorcontrib>He, Zhen-Xuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lin, Wu-Xi</creatorcontrib><creatorcontrib>Zhou, Ji-Yang</creatorcontrib><creatorcontrib>Xu, Jin-Shi</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Magnetic-field-dependent spin properties of divacancy defects in silicon carbide</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties. Here, we investigate the optically detected magnetic resonance (ODMR) spectra of divacancy spins in silicon carbide with a magnetic field orientation. The ODMR contrast decreases as the off-axis magnetic field strength increases. We then study the coherence times of divacancy spins in two different samples with magnetic field angles, and both of the coherence times decrease with the angle. The experiments pave the way for all-optical magnetic field sensing and quantum information processing. We investigate the optically detected magnetic resonance (ODMR) spectra and coherence times of divacancy spins in silicon carbide with a magnetic field orientation. Both the ODMR contrast and coherence time decrease with the magnetic field angle.</description><subject>Coherence</subject><subject>Data processing</subject><subject>Defects</subject><subject>Divacancies</subject><subject>Field strength</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic resonance</subject><subject>Quantum phenomena</subject><subject>Silicon carbide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LJDEQBuAgLn6tF-9KgxcRes1XV6ePoo4rzKqInpt0UpFIT7pNehb892YdnQVPKchDUfUWIQeM_mJUNGeWh0gBuHQbZIdTSUshar65rkFuk92UXiiFRoDYItsCFKOVYjvk_o9-Djh5UzqPvS0tjhgshqlIow_FGIcR4-QxFYMrrP-rjQ7mrbDo0EypyCT53pshFEbHzlv8SX443Sfc_3z3yNPs6vHidzm_u765OJ-XRtRqKhk61zXcaqBMA4KCjlXSNYaj7lCDZqCs4lwbACErqfJGlbNdB0bSWqLYIyervnnE1yWmqV34ZLDvdcBhmVpe142QUMk60-Nv9GVYxpCny0rVnIMSPKvTlTJxSCmia8foFzq-tYy2_3JuL_ntw0fOs4yPPlsuuwXaNf0KNoPDFYjJrH__H0q8A1Kjgdk</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Yan, Fei-Fei</creator><creator>Wang, Jun-Feng</creator><creator>He, Zhen-Xuan</creator><creator>Li, Qiang</creator><creator>Lin, Wu-Xi</creator><creator>Zhou, Ji-Yang</creator><creator>Xu, Jin-Shi</creator><creator>Li, Chuan-Feng</creator><creator>Guo, Guang-Can</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0528-1000</orcidid><orcidid>https://orcid.org/0000-0001-5681-3359</orcidid><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid></search><sort><creationdate>20230316</creationdate><title>Magnetic-field-dependent spin properties of divacancy defects in silicon carbide</title><author>Yan, Fei-Fei ; Wang, Jun-Feng ; He, Zhen-Xuan ; Li, Qiang ; Lin, Wu-Xi ; Zhou, Ji-Yang ; Xu, Jin-Shi ; Li, Chuan-Feng ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coherence</topic><topic>Data processing</topic><topic>Defects</topic><topic>Divacancies</topic><topic>Field strength</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic resonance</topic><topic>Quantum phenomena</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fei-Fei</creatorcontrib><creatorcontrib>Wang, Jun-Feng</creatorcontrib><creatorcontrib>He, Zhen-Xuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lin, Wu-Xi</creatorcontrib><creatorcontrib>Zhou, Ji-Yang</creatorcontrib><creatorcontrib>Xu, Jin-Shi</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Fei-Fei</au><au>Wang, Jun-Feng</au><au>He, Zhen-Xuan</au><au>Li, Qiang</au><au>Lin, Wu-Xi</au><au>Zhou, Ji-Yang</au><au>Xu, Jin-Shi</au><au>Li, Chuan-Feng</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-field-dependent spin properties of divacancy defects in silicon carbide</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-03-16</date><risdate>2023</risdate><volume>15</volume><issue>11</issue><spage>53</spage><epage>534</epage><pages>53-534</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties. Here, we investigate the optically detected magnetic resonance (ODMR) spectra of divacancy spins in silicon carbide with a magnetic field orientation. The ODMR contrast decreases as the off-axis magnetic field strength increases. We then study the coherence times of divacancy spins in two different samples with magnetic field angles, and both of the coherence times decrease with the angle. The experiments pave the way for all-optical magnetic field sensing and quantum information processing. We investigate the optically detected magnetic resonance (ODMR) spectra and coherence times of divacancy spins in silicon carbide with a magnetic field orientation. Both the ODMR contrast and coherence time decrease with the magnetic field angle.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36810581</pmid><doi>10.1039/d2nr06624f</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0528-1000</orcidid><orcidid>https://orcid.org/0000-0001-5681-3359</orcidid><orcidid>https://orcid.org/0000-0001-6815-8929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-03, Vol.15 (11), p.53-534
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmed_primary_36810581
source Royal Society of Chemistry
subjects Coherence
Data processing
Defects
Divacancies
Field strength
Magnetic fields
Magnetic properties
Magnetic resonance
Quantum phenomena
Silicon carbide
title Magnetic-field-dependent spin properties of divacancy defects in silicon carbide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-field-dependent%20spin%20properties%20of%20divacancy%20defects%20in%20silicon%20carbide&rft.jtitle=Nanoscale&rft.au=Yan,%20Fei-Fei&rft.date=2023-03-16&rft.volume=15&rft.issue=11&rft.spage=53&rft.epage=534&rft.pages=53-534&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr06624f&rft_dat=%3Cproquest_pubme%3E2787226832%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-1effb92da601a6e686b154f9c2eabea6a168d822ac66345483725fdbb6c4074e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787226832&rft_id=info:pmid/36810581&rfr_iscdi=true