Loading…

Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling

Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2023-02, Vol.158 (7), p.074902-074902
Main Authors: Martín-Roca, José, Bianco, Valentino, Alarcón, Francisco, Monnappa, Ajay K., Natale, Paolo, Monroy, Francisco, Orgaz, Belen, López-Montero, Ivan, Valeriani, Chantal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3
cites cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3
container_end_page 074902
container_issue 7
container_start_page 074902
container_title The Journal of chemical physics
container_volume 158
creator Martín-Roca, José
Bianco, Valentino
Alarcón, Francisco
Monnappa, Ajay K.
Natale, Paolo
Monroy, Francisco
Orgaz, Belen
López-Montero, Ivan
Valeriani, Chantal
description Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.
doi_str_mv 10.1063/5.0131935
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36813707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777134503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</originalsourceid><addsrcrecordid>eNp90F9r1TAYx_EwlO143MXegAS8UaHbk6bNn93J5lQYbIhel57kyZbR9qlJO9y7t_OcKQh6lZsPX_L8GDsScCxAyZP6GIQUVtZ7bCXA2EIrC8_YCqAUhVWgDtiLnO8AQOiy2mcHUhkhNegV819ukTq6eeAU-HXG2VNPQ5t56GZKmB0OmW8ihdj1-ZRfJOo5_hgxxR6HKfOJ-JjQRzfFe-Tn1-e8x0zZ0Rgd78ljF4ebl-x5aLuMh7t3zb5dfPh69qm4vPr4-ez9ZeEqYabCoPLSS2P0BpyVwVayghLLujU2tCUopURldDDGofolwHqLla-NNJXdyDV7s-2Oib7PmKemj8sFXdcOSHNuSq3tkrRLeM1e_0XvaE7D8rtHpYWsapCLertVLlHOCUMzLoe36aER0DxO39TNbvrFvtoV502P_rd82noB77Yguzi1U6Thv7V_4ntKf2Az-iB_AklXmX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777134503</pqid></control><display><type>article</type><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</creator><creatorcontrib>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</creatorcontrib><description>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0131935</identifier><identifier>PMID: 36813707</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bacteria ; Biofilms ; Computer Simulation ; Crosslinking ; Dissipation ; Embedding ; Hydrodynamics ; Pseudomonas fluorescens ; Pseudomonas fluorescens - physiology ; Rheological properties ; Rheology ; Shear strain ; Shear stress ; Viscoelasticity</subject><ispartof>The Journal of chemical physics, 2023-02, Vol.158 (7), p.074902-074902</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</citedby><cites>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</cites><orcidid>0000-0001-6535-8255 ; 0000-0002-1193-3514 ; 0000-0002-0502-4648 ; 0000-0002-4759-0816 ; 0000-0003-3844-6406 ; 0000-0001-6455-3083 ; 0000-0001-8131-6063 ; 0000-0001-7437-9664 ; 0000-0002-2154-466X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0131935$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36813707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín-Roca, José</creatorcontrib><creatorcontrib>Bianco, Valentino</creatorcontrib><creatorcontrib>Alarcón, Francisco</creatorcontrib><creatorcontrib>Monnappa, Ajay K.</creatorcontrib><creatorcontrib>Natale, Paolo</creatorcontrib><creatorcontrib>Monroy, Francisco</creatorcontrib><creatorcontrib>Orgaz, Belen</creatorcontrib><creatorcontrib>López-Montero, Ivan</creatorcontrib><creatorcontrib>Valeriani, Chantal</creatorcontrib><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</description><subject>Bacteria</subject><subject>Biofilms</subject><subject>Computer Simulation</subject><subject>Crosslinking</subject><subject>Dissipation</subject><subject>Embedding</subject><subject>Hydrodynamics</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - physiology</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Viscoelasticity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F9r1TAYx_EwlO143MXegAS8UaHbk6bNn93J5lQYbIhel57kyZbR9qlJO9y7t_OcKQh6lZsPX_L8GDsScCxAyZP6GIQUVtZ7bCXA2EIrC8_YCqAUhVWgDtiLnO8AQOiy2mcHUhkhNegV819ukTq6eeAU-HXG2VNPQ5t56GZKmB0OmW8ihdj1-ZRfJOo5_hgxxR6HKfOJ-JjQRzfFe-Tn1-e8x0zZ0Rgd78ljF4ebl-x5aLuMh7t3zb5dfPh69qm4vPr4-ez9ZeEqYabCoPLSS2P0BpyVwVayghLLujU2tCUopURldDDGofolwHqLla-NNJXdyDV7s-2Oib7PmKemj8sFXdcOSHNuSq3tkrRLeM1e_0XvaE7D8rtHpYWsapCLertVLlHOCUMzLoe36aER0DxO39TNbvrFvtoV502P_rd82noB77Yguzi1U6Thv7V_4ntKf2Az-iB_AklXmX4</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Martín-Roca, José</creator><creator>Bianco, Valentino</creator><creator>Alarcón, Francisco</creator><creator>Monnappa, Ajay K.</creator><creator>Natale, Paolo</creator><creator>Monroy, Francisco</creator><creator>Orgaz, Belen</creator><creator>López-Montero, Ivan</creator><creator>Valeriani, Chantal</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6535-8255</orcidid><orcidid>https://orcid.org/0000-0002-1193-3514</orcidid><orcidid>https://orcid.org/0000-0002-0502-4648</orcidid><orcidid>https://orcid.org/0000-0002-4759-0816</orcidid><orcidid>https://orcid.org/0000-0003-3844-6406</orcidid><orcidid>https://orcid.org/0000-0001-6455-3083</orcidid><orcidid>https://orcid.org/0000-0001-8131-6063</orcidid><orcidid>https://orcid.org/0000-0001-7437-9664</orcidid><orcidid>https://orcid.org/0000-0002-2154-466X</orcidid></search><sort><creationdate>20230221</creationdate><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><author>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Biofilms</topic><topic>Computer Simulation</topic><topic>Crosslinking</topic><topic>Dissipation</topic><topic>Embedding</topic><topic>Hydrodynamics</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - physiology</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Roca, José</creatorcontrib><creatorcontrib>Bianco, Valentino</creatorcontrib><creatorcontrib>Alarcón, Francisco</creatorcontrib><creatorcontrib>Monnappa, Ajay K.</creatorcontrib><creatorcontrib>Natale, Paolo</creatorcontrib><creatorcontrib>Monroy, Francisco</creatorcontrib><creatorcontrib>Orgaz, Belen</creatorcontrib><creatorcontrib>López-Montero, Ivan</creatorcontrib><creatorcontrib>Valeriani, Chantal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Roca, José</au><au>Bianco, Valentino</au><au>Alarcón, Francisco</au><au>Monnappa, Ajay K.</au><au>Natale, Paolo</au><au>Monroy, Francisco</au><au>Orgaz, Belen</au><au>López-Montero, Ivan</au><au>Valeriani, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-02-21</date><risdate>2023</risdate><volume>158</volume><issue>7</issue><spage>074902</spage><epage>074902</epage><pages>074902-074902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36813707</pmid><doi>10.1063/5.0131935</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6535-8255</orcidid><orcidid>https://orcid.org/0000-0002-1193-3514</orcidid><orcidid>https://orcid.org/0000-0002-0502-4648</orcidid><orcidid>https://orcid.org/0000-0002-4759-0816</orcidid><orcidid>https://orcid.org/0000-0003-3844-6406</orcidid><orcidid>https://orcid.org/0000-0001-6455-3083</orcidid><orcidid>https://orcid.org/0000-0001-8131-6063</orcidid><orcidid>https://orcid.org/0000-0001-7437-9664</orcidid><orcidid>https://orcid.org/0000-0002-2154-466X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-02, Vol.158 (7), p.074902-074902
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_36813707
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Bacteria
Biofilms
Computer Simulation
Crosslinking
Dissipation
Embedding
Hydrodynamics
Pseudomonas fluorescens
Pseudomonas fluorescens - physiology
Rheological properties
Rheology
Shear strain
Shear stress
Viscoelasticity
title Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheology%20of%20Pseudomonas%20fluorescens%20biofilms:%20From%20experiments%20to%20predictive%20DPD%20mesoscopic%20modeling&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mart%C3%ADn-Roca,%20Jos%C3%A9&rft.date=2023-02-21&rft.volume=158&rft.issue=7&rft.spage=074902&rft.epage=074902&rft.pages=074902-074902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0131935&rft_dat=%3Cproquest_pubme%3E2777134503%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777134503&rft_id=info:pmid/36813707&rfr_iscdi=true