Loading…
Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling
Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without l...
Saved in:
Published in: | The Journal of chemical physics 2023-02, Vol.158 (7), p.074902-074902 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3 |
container_end_page | 074902 |
container_issue | 7 |
container_start_page | 074902 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Martín-Roca, José Bianco, Valentino Alarcón, Francisco Monnappa, Ajay K. Natale, Paolo Monroy, Francisco Orgaz, Belen López-Montero, Ivan Valeriani, Chantal |
description | Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling. |
doi_str_mv | 10.1063/5.0131935 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36813707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777134503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</originalsourceid><addsrcrecordid>eNp90F9r1TAYx_EwlO143MXegAS8UaHbk6bNn93J5lQYbIhel57kyZbR9qlJO9y7t_OcKQh6lZsPX_L8GDsScCxAyZP6GIQUVtZ7bCXA2EIrC8_YCqAUhVWgDtiLnO8AQOiy2mcHUhkhNegV819ukTq6eeAU-HXG2VNPQ5t56GZKmB0OmW8ihdj1-ZRfJOo5_hgxxR6HKfOJ-JjQRzfFe-Tn1-e8x0zZ0Rgd78ljF4ebl-x5aLuMh7t3zb5dfPh69qm4vPr4-ez9ZeEqYabCoPLSS2P0BpyVwVayghLLujU2tCUopURldDDGofolwHqLla-NNJXdyDV7s-2Oib7PmKemj8sFXdcOSHNuSq3tkrRLeM1e_0XvaE7D8rtHpYWsapCLertVLlHOCUMzLoe36aER0DxO39TNbvrFvtoV502P_rd82noB77Yguzi1U6Thv7V_4ntKf2Az-iB_AklXmX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777134503</pqid></control><display><type>article</type><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</creator><creatorcontrib>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</creatorcontrib><description>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0131935</identifier><identifier>PMID: 36813707</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bacteria ; Biofilms ; Computer Simulation ; Crosslinking ; Dissipation ; Embedding ; Hydrodynamics ; Pseudomonas fluorescens ; Pseudomonas fluorescens - physiology ; Rheological properties ; Rheology ; Shear strain ; Shear stress ; Viscoelasticity</subject><ispartof>The Journal of chemical physics, 2023-02, Vol.158 (7), p.074902-074902</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</citedby><cites>FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</cites><orcidid>0000-0001-6535-8255 ; 0000-0002-1193-3514 ; 0000-0002-0502-4648 ; 0000-0002-4759-0816 ; 0000-0003-3844-6406 ; 0000-0001-6455-3083 ; 0000-0001-8131-6063 ; 0000-0001-7437-9664 ; 0000-0002-2154-466X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0131935$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36813707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín-Roca, José</creatorcontrib><creatorcontrib>Bianco, Valentino</creatorcontrib><creatorcontrib>Alarcón, Francisco</creatorcontrib><creatorcontrib>Monnappa, Ajay K.</creatorcontrib><creatorcontrib>Natale, Paolo</creatorcontrib><creatorcontrib>Monroy, Francisco</creatorcontrib><creatorcontrib>Orgaz, Belen</creatorcontrib><creatorcontrib>López-Montero, Ivan</creatorcontrib><creatorcontrib>Valeriani, Chantal</creatorcontrib><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</description><subject>Bacteria</subject><subject>Biofilms</subject><subject>Computer Simulation</subject><subject>Crosslinking</subject><subject>Dissipation</subject><subject>Embedding</subject><subject>Hydrodynamics</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - physiology</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Viscoelasticity</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90F9r1TAYx_EwlO143MXegAS8UaHbk6bNn93J5lQYbIhel57kyZbR9qlJO9y7t_OcKQh6lZsPX_L8GDsScCxAyZP6GIQUVtZ7bCXA2EIrC8_YCqAUhVWgDtiLnO8AQOiy2mcHUhkhNegV819ukTq6eeAU-HXG2VNPQ5t56GZKmB0OmW8ihdj1-ZRfJOo5_hgxxR6HKfOJ-JjQRzfFe-Tn1-e8x0zZ0Rgd78ljF4ebl-x5aLuMh7t3zb5dfPh69qm4vPr4-ez9ZeEqYabCoPLSS2P0BpyVwVayghLLujU2tCUopURldDDGofolwHqLla-NNJXdyDV7s-2Oib7PmKemj8sFXdcOSHNuSq3tkrRLeM1e_0XvaE7D8rtHpYWsapCLertVLlHOCUMzLoe36aER0DxO39TNbvrFvtoV502P_rd82noB77Yguzi1U6Thv7V_4ntKf2Az-iB_AklXmX4</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Martín-Roca, José</creator><creator>Bianco, Valentino</creator><creator>Alarcón, Francisco</creator><creator>Monnappa, Ajay K.</creator><creator>Natale, Paolo</creator><creator>Monroy, Francisco</creator><creator>Orgaz, Belen</creator><creator>López-Montero, Ivan</creator><creator>Valeriani, Chantal</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6535-8255</orcidid><orcidid>https://orcid.org/0000-0002-1193-3514</orcidid><orcidid>https://orcid.org/0000-0002-0502-4648</orcidid><orcidid>https://orcid.org/0000-0002-4759-0816</orcidid><orcidid>https://orcid.org/0000-0003-3844-6406</orcidid><orcidid>https://orcid.org/0000-0001-6455-3083</orcidid><orcidid>https://orcid.org/0000-0001-8131-6063</orcidid><orcidid>https://orcid.org/0000-0001-7437-9664</orcidid><orcidid>https://orcid.org/0000-0002-2154-466X</orcidid></search><sort><creationdate>20230221</creationdate><title>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</title><author>Martín-Roca, José ; Bianco, Valentino ; Alarcón, Francisco ; Monnappa, Ajay K. ; Natale, Paolo ; Monroy, Francisco ; Orgaz, Belen ; López-Montero, Ivan ; Valeriani, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Biofilms</topic><topic>Computer Simulation</topic><topic>Crosslinking</topic><topic>Dissipation</topic><topic>Embedding</topic><topic>Hydrodynamics</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - physiology</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Roca, José</creatorcontrib><creatorcontrib>Bianco, Valentino</creatorcontrib><creatorcontrib>Alarcón, Francisco</creatorcontrib><creatorcontrib>Monnappa, Ajay K.</creatorcontrib><creatorcontrib>Natale, Paolo</creatorcontrib><creatorcontrib>Monroy, Francisco</creatorcontrib><creatorcontrib>Orgaz, Belen</creatorcontrib><creatorcontrib>López-Montero, Ivan</creatorcontrib><creatorcontrib>Valeriani, Chantal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Roca, José</au><au>Bianco, Valentino</au><au>Alarcón, Francisco</au><au>Monnappa, Ajay K.</au><au>Natale, Paolo</au><au>Monroy, Francisco</au><au>Orgaz, Belen</au><au>López-Montero, Ivan</au><au>Valeriani, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-02-21</date><risdate>2023</risdate><volume>158</volume><issue>7</issue><spage>074902</spage><epage>074902</epage><pages>074902-074902</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36813707</pmid><doi>10.1063/5.0131935</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6535-8255</orcidid><orcidid>https://orcid.org/0000-0002-1193-3514</orcidid><orcidid>https://orcid.org/0000-0002-0502-4648</orcidid><orcidid>https://orcid.org/0000-0002-4759-0816</orcidid><orcidid>https://orcid.org/0000-0003-3844-6406</orcidid><orcidid>https://orcid.org/0000-0001-6455-3083</orcidid><orcidid>https://orcid.org/0000-0001-8131-6063</orcidid><orcidid>https://orcid.org/0000-0001-7437-9664</orcidid><orcidid>https://orcid.org/0000-0002-2154-466X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-02, Vol.158 (7), p.074902-074902 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_36813707 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Bacteria Biofilms Computer Simulation Crosslinking Dissipation Embedding Hydrodynamics Pseudomonas fluorescens Pseudomonas fluorescens - physiology Rheological properties Rheology Shear strain Shear stress Viscoelasticity |
title | Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheology%20of%20Pseudomonas%20fluorescens%20biofilms:%20From%20experiments%20to%20predictive%20DPD%20mesoscopic%20modeling&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mart%C3%ADn-Roca,%20Jos%C3%A9&rft.date=2023-02-21&rft.volume=158&rft.issue=7&rft.spage=074902&rft.epage=074902&rft.pages=074902-074902&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0131935&rft_dat=%3Cproquest_pubme%3E2777134503%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-8e6d3d3887b0c93f943402e25a89fa206661487f88ce60c93f09d9e4d583849b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2777134503&rft_id=info:pmid/36813707&rfr_iscdi=true |