Loading…

Fano interference between collective modes in cuprate high-T c superconductors

Cuprate high-T superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-03, Vol.14 (1), p.1343
Main Authors: Chu, Hao, Kovalev, Sergey, Wang, Zi Xiao, Schwarz, Lukas, Dong, Tao, Feng, Liwen, Haenel, Rafael, Kim, Min-Jae, Shabestari, Parmida, Hoang, Le Phuong, Honasoge, Kedar, Dawson, Robert David, Putzky, Daniel, Kim, Gideok, Puviani, Matteo, Chen, Min, Awari, Nilesh, Ponomaryov, Alexey N, Ilyakov, Igor, Bluschke, Martin, Boschini, Fabio, Zonno, Marta, Zhdanovich, Sergey, Na, Mengxing, Christiani, Georg, Logvenov, Gennady, Jones, David J, Damascelli, Andrea, Minola, Matteo, Keimer, Bernhard, Manske, Dirk, Wang, Nanlin, Deinert, Jan-Christoph, Kaiser, Stefan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cuprate high-T superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency. In this study, we report a new type of Fano resonance manifested by the nonlinear terahertz response of cuprate high-T superconductors, where we resolve both the amplitude and phase signatures of the Fano resonance. Our extensive hole-doping and magnetic field dependent investigation suggests that the Fano resonance may arise from an interplay between the superconducting fluctuations and the charge density wave fluctuations, prompting future studies to look more closely into their dynamical interactions.
ISSN:2041-1723