Loading…
Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data
Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to ident...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2023-09, Vol.20 (5), p.2700-2711 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183 |
container_end_page | 2711 |
container_issue | 5 |
container_start_page | 2700 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 20 |
creator | Alatrany, Abbas Saad Khan, Wasiq Hussain, Abir J. Mustafina, Jamila Al-Jumeily, Dhiya |
description | Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works. |
doi_str_mv | 10.1109/TCBB.2022.3233869 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37018274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005258</ieee_id><sourcerecordid>2920586852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpqBO3P6BQiqCH5LLOSNrVxzG28wWGXGx6FNrdUSKzH65kH5pfn13shNLLzMA88zI8hHxnMGMMzPV6MZ_POHA-E1wILc0ncs6KQmXGyPzzOOdFVhgpJuQipS0Azw3kX8hEKGCaq_ycbNbRdcljpCt0sQvdM_V9pIvGpRR8qNw-9B3tPb1pXl8wtBgvE12GhC4hnQ-lpsP-Hru-Rfo71EiXbu--kjPvmoTfTn1KNne368VDtnq6f1zcrLJKGLHPOFc1OI7eYeEcgCyFYV6g9FgzkMwxUZYS8hK1KmsQWteYV8Yrw5RWTIspuTrm7mL_54Bpb9uQKmwa12F_SJYrI5kclIzor__QbX-I3fCd5YZDoaUu-ECxI1XFPqWI3u5iaF38axnY0bkdndvRuT05H25-npIPZYv1x8W75AH4cQQCIv4TCFDw4bM3HCmDyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920586852</pqid></control><display><type>article</type><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</creator><creatorcontrib>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</creatorcontrib><description>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2022.3233869</identifier><identifier>PMID: 37018274</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Alzheminer's disease ; Artificial neural networks ; Bioinformatics ; Biomarkers ; Classification ; Data models ; Datasets ; Diseases ; Feature extraction ; genome wide data ; Genome-wide association studies ; Genomes ; GWAS ; Learning ; machine learning ; Medical imaging ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Nucleotides ; Predictive models ; Signs and symptoms ; Single-nucleotide polymorphism ; SNPs ; Support vector machines ; Transfer learning</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.2700-2711</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</citedby><cites>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</cites><orcidid>0000-0001-8413-0045 ; 0000-0002-4504-1506 ; 0000-0002-9170-0568 ; 0000-0002-7511-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37018274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alatrany, Abbas Saad</creatorcontrib><creatorcontrib>Khan, Wasiq</creatorcontrib><creatorcontrib>Hussain, Abir J.</creatorcontrib><creatorcontrib>Mustafina, Jamila</creatorcontrib><creatorcontrib>Al-Jumeily, Dhiya</creatorcontrib><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</description><subject>Alzheimer's disease</subject><subject>Alzheminer's disease</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Data models</subject><subject>Datasets</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>genome wide data</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>GWAS</subject><subject>Learning</subject><subject>machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Nucleotides</subject><subject>Predictive models</subject><subject>Signs and symptoms</subject><subject>Single-nucleotide polymorphism</subject><subject>SNPs</subject><subject>Support vector machines</subject><subject>Transfer learning</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpqBO3P6BQiqCH5LLOSNrVxzG28wWGXGx6FNrdUSKzH65kH5pfn13shNLLzMA88zI8hHxnMGMMzPV6MZ_POHA-E1wILc0ncs6KQmXGyPzzOOdFVhgpJuQipS0Azw3kX8hEKGCaq_ycbNbRdcljpCt0sQvdM_V9pIvGpRR8qNw-9B3tPb1pXl8wtBgvE12GhC4hnQ-lpsP-Hru-Rfo71EiXbu--kjPvmoTfTn1KNne368VDtnq6f1zcrLJKGLHPOFc1OI7eYeEcgCyFYV6g9FgzkMwxUZYS8hK1KmsQWteYV8Yrw5RWTIspuTrm7mL_54Bpb9uQKmwa12F_SJYrI5kclIzor__QbX-I3fCd5YZDoaUu-ECxI1XFPqWI3u5iaF38axnY0bkdndvRuT05H25-npIPZYv1x8W75AH4cQQCIv4TCFDw4bM3HCmDyQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Alatrany, Abbas Saad</creator><creator>Khan, Wasiq</creator><creator>Hussain, Abir J.</creator><creator>Mustafina, Jamila</creator><creator>Al-Jumeily, Dhiya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8413-0045</orcidid><orcidid>https://orcid.org/0000-0002-4504-1506</orcidid><orcidid>https://orcid.org/0000-0002-9170-0568</orcidid><orcidid>https://orcid.org/0000-0002-7511-3873</orcidid></search><sort><creationdate>20230901</creationdate><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><author>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Alzheminer's disease</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Data models</topic><topic>Datasets</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>genome wide data</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>GWAS</topic><topic>Learning</topic><topic>machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Nucleotides</topic><topic>Predictive models</topic><topic>Signs and symptoms</topic><topic>Single-nucleotide polymorphism</topic><topic>SNPs</topic><topic>Support vector machines</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alatrany, Abbas Saad</creatorcontrib><creatorcontrib>Khan, Wasiq</creatorcontrib><creatorcontrib>Hussain, Abir J.</creatorcontrib><creatorcontrib>Mustafina, Jamila</creatorcontrib><creatorcontrib>Al-Jumeily, Dhiya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alatrany, Abbas Saad</au><au>Khan, Wasiq</au><au>Hussain, Abir J.</au><au>Mustafina, Jamila</au><au>Al-Jumeily, Dhiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>2700</spage><epage>2711</epage><pages>2700-2711</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37018274</pmid><doi>10.1109/TCBB.2022.3233869</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8413-0045</orcidid><orcidid>https://orcid.org/0000-0002-4504-1506</orcidid><orcidid>https://orcid.org/0000-0002-9170-0568</orcidid><orcidid>https://orcid.org/0000-0002-7511-3873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.2700-2711 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_pubmed_primary_37018274 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Alzheimer's disease Alzheminer's disease Artificial neural networks Bioinformatics Biomarkers Classification Data models Datasets Diseases Feature extraction genome wide data Genome-wide association studies Genomes GWAS Learning machine learning Medical imaging Neural networks Neurodegenerative diseases Neuroimaging Nucleotides Predictive models Signs and symptoms Single-nucleotide polymorphism SNPs Support vector machines Transfer learning |
title | Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20for%20Classification%20of%20Alzheimer's%20Disease%20Based%20on%20Genome%20Wide%20Data&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Alatrany,%20Abbas%20Saad&rft.date=2023-09-01&rft.volume=20&rft.issue=5&rft.spage=2700&rft.epage=2711&rft.pages=2700-2711&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2022.3233869&rft_dat=%3Cproquest_pubme%3E2920586852%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920586852&rft_id=info:pmid/37018274&rft_ieee_id=10005258&rfr_iscdi=true |