Loading…

Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data

Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to ident...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2023-09, Vol.20 (5), p.2700-2711
Main Authors: Alatrany, Abbas Saad, Khan, Wasiq, Hussain, Abir J., Mustafina, Jamila, Al-Jumeily, Dhiya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183
cites cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183
container_end_page 2711
container_issue 5
container_start_page 2700
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 20
creator Alatrany, Abbas Saad
Khan, Wasiq
Hussain, Abir J.
Mustafina, Jamila
Al-Jumeily, Dhiya
description Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.
doi_str_mv 10.1109/TCBB.2022.3233869
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37018274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005258</ieee_id><sourcerecordid>2920586852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpqBO3P6BQiqCH5LLOSNrVxzG28wWGXGx6FNrdUSKzH65kH5pfn13shNLLzMA88zI8hHxnMGMMzPV6MZ_POHA-E1wILc0ncs6KQmXGyPzzOOdFVhgpJuQipS0Azw3kX8hEKGCaq_ycbNbRdcljpCt0sQvdM_V9pIvGpRR8qNw-9B3tPb1pXl8wtBgvE12GhC4hnQ-lpsP-Hru-Rfo71EiXbu--kjPvmoTfTn1KNne368VDtnq6f1zcrLJKGLHPOFc1OI7eYeEcgCyFYV6g9FgzkMwxUZYS8hK1KmsQWteYV8Yrw5RWTIspuTrm7mL_54Bpb9uQKmwa12F_SJYrI5kclIzor__QbX-I3fCd5YZDoaUu-ECxI1XFPqWI3u5iaF38axnY0bkdndvRuT05H25-npIPZYv1x8W75AH4cQQCIv4TCFDw4bM3HCmDyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920586852</pqid></control><display><type>article</type><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</creator><creatorcontrib>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</creatorcontrib><description>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2022.3233869</identifier><identifier>PMID: 37018274</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Alzheminer's disease ; Artificial neural networks ; Bioinformatics ; Biomarkers ; Classification ; Data models ; Datasets ; Diseases ; Feature extraction ; genome wide data ; Genome-wide association studies ; Genomes ; GWAS ; Learning ; machine learning ; Medical imaging ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Nucleotides ; Predictive models ; Signs and symptoms ; Single-nucleotide polymorphism ; SNPs ; Support vector machines ; Transfer learning</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.2700-2711</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</citedby><cites>FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</cites><orcidid>0000-0001-8413-0045 ; 0000-0002-4504-1506 ; 0000-0002-9170-0568 ; 0000-0002-7511-3873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37018274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alatrany, Abbas Saad</creatorcontrib><creatorcontrib>Khan, Wasiq</creatorcontrib><creatorcontrib>Hussain, Abir J.</creatorcontrib><creatorcontrib>Mustafina, Jamila</creatorcontrib><creatorcontrib>Al-Jumeily, Dhiya</creatorcontrib><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</description><subject>Alzheimer's disease</subject><subject>Alzheminer's disease</subject><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Data models</subject><subject>Datasets</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>genome wide data</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>GWAS</subject><subject>Learning</subject><subject>machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Nucleotides</subject><subject>Predictive models</subject><subject>Signs and symptoms</subject><subject>Single-nucleotide polymorphism</subject><subject>SNPs</subject><subject>Support vector machines</subject><subject>Transfer learning</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1rGzEQhkVpqBO3P6BQiqCH5LLOSNrVxzG28wWGXGx6FNrdUSKzH65kH5pfn13shNLLzMA88zI8hHxnMGMMzPV6MZ_POHA-E1wILc0ncs6KQmXGyPzzOOdFVhgpJuQipS0Azw3kX8hEKGCaq_ycbNbRdcljpCt0sQvdM_V9pIvGpRR8qNw-9B3tPb1pXl8wtBgvE12GhC4hnQ-lpsP-Hru-Rfo71EiXbu--kjPvmoTfTn1KNne368VDtnq6f1zcrLJKGLHPOFc1OI7eYeEcgCyFYV6g9FgzkMwxUZYS8hK1KmsQWteYV8Yrw5RWTIspuTrm7mL_54Bpb9uQKmwa12F_SJYrI5kclIzor__QbX-I3fCd5YZDoaUu-ECxI1XFPqWI3u5iaF38axnY0bkdndvRuT05H25-npIPZYv1x8W75AH4cQQCIv4TCFDw4bM3HCmDyQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Alatrany, Abbas Saad</creator><creator>Khan, Wasiq</creator><creator>Hussain, Abir J.</creator><creator>Mustafina, Jamila</creator><creator>Al-Jumeily, Dhiya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8413-0045</orcidid><orcidid>https://orcid.org/0000-0002-4504-1506</orcidid><orcidid>https://orcid.org/0000-0002-9170-0568</orcidid><orcidid>https://orcid.org/0000-0002-7511-3873</orcidid></search><sort><creationdate>20230901</creationdate><title>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</title><author>Alatrany, Abbas Saad ; Khan, Wasiq ; Hussain, Abir J. ; Mustafina, Jamila ; Al-Jumeily, Dhiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Alzheminer's disease</topic><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Data models</topic><topic>Datasets</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>genome wide data</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>GWAS</topic><topic>Learning</topic><topic>machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Nucleotides</topic><topic>Predictive models</topic><topic>Signs and symptoms</topic><topic>Single-nucleotide polymorphism</topic><topic>SNPs</topic><topic>Support vector machines</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alatrany, Abbas Saad</creatorcontrib><creatorcontrib>Khan, Wasiq</creatorcontrib><creatorcontrib>Hussain, Abir J.</creatorcontrib><creatorcontrib>Mustafina, Jamila</creatorcontrib><creatorcontrib>Al-Jumeily, Dhiya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alatrany, Abbas Saad</au><au>Khan, Wasiq</au><au>Hussain, Abir J.</au><au>Mustafina, Jamila</au><au>Al-Jumeily, Dhiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>2700</spage><epage>2711</epage><pages>2700-2711</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37018274</pmid><doi>10.1109/TCBB.2022.3233869</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8413-0045</orcidid><orcidid>https://orcid.org/0000-0002-4504-1506</orcidid><orcidid>https://orcid.org/0000-0002-9170-0568</orcidid><orcidid>https://orcid.org/0000-0002-7511-3873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.2700-2711
issn 1545-5963
1557-9964
language eng
recordid cdi_pubmed_primary_37018274
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service)
subjects Alzheimer's disease
Alzheminer's disease
Artificial neural networks
Bioinformatics
Biomarkers
Classification
Data models
Datasets
Diseases
Feature extraction
genome wide data
Genome-wide association studies
Genomes
GWAS
Learning
machine learning
Medical imaging
Neural networks
Neurodegenerative diseases
Neuroimaging
Nucleotides
Predictive models
Signs and symptoms
Single-nucleotide polymorphism
SNPs
Support vector machines
Transfer learning
title Transfer Learning for Classification of Alzheimer's Disease Based on Genome Wide Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20for%20Classification%20of%20Alzheimer's%20Disease%20Based%20on%20Genome%20Wide%20Data&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Alatrany,%20Abbas%20Saad&rft.date=2023-09-01&rft.volume=20&rft.issue=5&rft.spage=2700&rft.epage=2711&rft.pages=2700-2711&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2022.3233869&rft_dat=%3Cproquest_pubme%3E2920586852%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-227d0a2efae5aa006b391f3e6fed1061a13bb604be87bd0388de4c9f791787183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920586852&rft_id=info:pmid/37018274&rft_ieee_id=10005258&rfr_iscdi=true