Loading…
ERNet: An Efficient and Reliable Human-Object Interaction Detection Network
Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction...
Saved in:
Published in: | IEEE transactions on image processing 2023, Vol.32, p.964-979 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903 |
container_end_page | 979 |
container_issue | |
container_start_page | 964 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Lim, JunYi Baskaran, Vishnu Monn Lim, Joanne Mun-Yee Wong, KokSheik See, John Tistarelli, Massimo |
description | Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection. The proposed model employs an efficient multi-scale deformable attention to effectively capture vital HOI features. We also put forward a novel detection attention module to adaptively generate semantically rich instance and interaction tokens. These tokens undergo pre-emptive detections to produce initial region and vector proposals that also serve as queries which enhances the feature refinement process in the transformer decoders. Several impactful enhancements are also applied to improve the HOI representation learning. Additionally, we utilize a predictive uncertainty estimation framework in the instance and interaction classification heads to quantify the uncertainty behind each prediction. By doing so, we can accurately and reliably predict HOIs even under challenging scenarios. Experiment results on the HICO-Det, V-COCO, and HOI-A datasets demonstrate that the proposed model achieves state-of-the-art performance in detection accuracy and training efficiency. Codes are publicly available at https://github.com/Monash-CyPhi-AI-Research-Lab/ernet . |
doi_str_mv | 10.1109/TIP.2022.3231528 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37022006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10026602</ieee_id><sourcerecordid>2770781932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnd1ssllvpVZbLFZKPYfdzSyk5qPmA_HfuyVVxNPM4XlfZh5CLimMKQV5t1m8jhkwNg5YQEMWH5EhlZz6AJwdux1C4QvK5YCcNc0WgPKQRqdkEAgXAoiG5Hm2fsH23puU3szazGRYtp4qU2-NeaZ0jt68K1Tpr_QWTestyhZrZdqsKr0HbLHfXMNnVb-fkxOr8gYvDnNE3h5nm-ncX66eFtPJ0jcBj1tfpBEHzUwkQq11xGgsNdg41ppZCRTDAEEIHhurpAJhwtSGHJC7aSOUEIzIbd-7q6uPDps2KbLGYJ6rEquuSZiQ7mkesz168w_dVl1duuscJUDEVDp1IwI9ZeqqaWq0ya7OClV_JRSSvejEiU72opODaBe5PhR3usD0N_Bj1gFXPZAh4p8-YFEELPgGpSd_fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770781932</pqid></control><display><type>article</type><title>ERNet: An Efficient and Reliable Human-Object Interaction Detection Network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lim, JunYi ; Baskaran, Vishnu Monn ; Lim, Joanne Mun-Yee ; Wong, KokSheik ; See, John ; Tistarelli, Massimo</creator><creatorcontrib>Lim, JunYi ; Baskaran, Vishnu Monn ; Lim, Joanne Mun-Yee ; Wong, KokSheik ; See, John ; Tistarelli, Massimo</creatorcontrib><description>Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection. The proposed model employs an efficient multi-scale deformable attention to effectively capture vital HOI features. We also put forward a novel detection attention module to adaptively generate semantically rich instance and interaction tokens. These tokens undergo pre-emptive detections to produce initial region and vector proposals that also serve as queries which enhances the feature refinement process in the transformer decoders. Several impactful enhancements are also applied to improve the HOI representation learning. Additionally, we utilize a predictive uncertainty estimation framework in the instance and interaction classification heads to quantify the uncertainty behind each prediction. By doing so, we can accurately and reliably predict HOIs even under challenging scenarios. Experiment results on the HICO-Det, V-COCO, and HOI-A datasets demonstrate that the proposed model achieves state-of-the-art performance in detection accuracy and training efficiency. Codes are publicly available at https://github.com/Monash-CyPhi-AI-Research-Lab/ernet .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2022.3231528</identifier><identifier>PMID: 37022006</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Attention ; Autonomous cars ; Decoders ; Decoding ; deformable attention ; Deformation effects ; Estimation ; Feature extraction ; Formability ; Human-object interaction detection ; Humans ; Object recognition ; Query processing ; Training ; transformer ; Transformers ; Uncertainty ; uncertainty estimation</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.964-979</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903</citedby><cites>FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903</cites><orcidid>0000-0002-4893-2291 ; 0000-0001-6809-5817 ; 0000-0002-3406-3048 ; 0000-0002-7381-4684 ; 0000-0002-1326-8634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10026602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, JunYi</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Lim, Joanne Mun-Yee</creatorcontrib><creatorcontrib>Wong, KokSheik</creatorcontrib><creatorcontrib>See, John</creatorcontrib><creatorcontrib>Tistarelli, Massimo</creatorcontrib><title>ERNet: An Efficient and Reliable Human-Object Interaction Detection Network</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection. The proposed model employs an efficient multi-scale deformable attention to effectively capture vital HOI features. We also put forward a novel detection attention module to adaptively generate semantically rich instance and interaction tokens. These tokens undergo pre-emptive detections to produce initial region and vector proposals that also serve as queries which enhances the feature refinement process in the transformer decoders. Several impactful enhancements are also applied to improve the HOI representation learning. Additionally, we utilize a predictive uncertainty estimation framework in the instance and interaction classification heads to quantify the uncertainty behind each prediction. By doing so, we can accurately and reliably predict HOIs even under challenging scenarios. Experiment results on the HICO-Det, V-COCO, and HOI-A datasets demonstrate that the proposed model achieves state-of-the-art performance in detection accuracy and training efficiency. Codes are publicly available at https://github.com/Monash-CyPhi-AI-Research-Lab/ernet .</description><subject>Adaptation models</subject><subject>Attention</subject><subject>Autonomous cars</subject><subject>Decoders</subject><subject>Decoding</subject><subject>deformable attention</subject><subject>Deformation effects</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Human-object interaction detection</subject><subject>Humans</subject><subject>Object recognition</subject><subject>Query processing</subject><subject>Training</subject><subject>transformer</subject><subject>Transformers</subject><subject>Uncertainty</subject><subject>uncertainty estimation</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3ePYgEvHhJnd1ssllvpVZbLFZKPYfdzSyk5qPmA_HfuyVVxNPM4XlfZh5CLimMKQV5t1m8jhkwNg5YQEMWH5EhlZz6AJwdux1C4QvK5YCcNc0WgPKQRqdkEAgXAoiG5Hm2fsH23puU3szazGRYtp4qU2-NeaZ0jt68K1Tpr_QWTestyhZrZdqsKr0HbLHfXMNnVb-fkxOr8gYvDnNE3h5nm-ncX66eFtPJ0jcBj1tfpBEHzUwkQq11xGgsNdg41ppZCRTDAEEIHhurpAJhwtSGHJC7aSOUEIzIbd-7q6uPDps2KbLGYJ6rEquuSZiQ7mkesz168w_dVl1duuscJUDEVDp1IwI9ZeqqaWq0ya7OClV_JRSSvejEiU72opODaBe5PhR3usD0N_Bj1gFXPZAh4p8-YFEELPgGpSd_fQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lim, JunYi</creator><creator>Baskaran, Vishnu Monn</creator><creator>Lim, Joanne Mun-Yee</creator><creator>Wong, KokSheik</creator><creator>See, John</creator><creator>Tistarelli, Massimo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4893-2291</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid><orcidid>https://orcid.org/0000-0002-3406-3048</orcidid><orcidid>https://orcid.org/0000-0002-7381-4684</orcidid><orcidid>https://orcid.org/0000-0002-1326-8634</orcidid></search><sort><creationdate>2023</creationdate><title>ERNet: An Efficient and Reliable Human-Object Interaction Detection Network</title><author>Lim, JunYi ; Baskaran, Vishnu Monn ; Lim, Joanne Mun-Yee ; Wong, KokSheik ; See, John ; Tistarelli, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Attention</topic><topic>Autonomous cars</topic><topic>Decoders</topic><topic>Decoding</topic><topic>deformable attention</topic><topic>Deformation effects</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Human-object interaction detection</topic><topic>Humans</topic><topic>Object recognition</topic><topic>Query processing</topic><topic>Training</topic><topic>transformer</topic><topic>Transformers</topic><topic>Uncertainty</topic><topic>uncertainty estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, JunYi</creatorcontrib><creatorcontrib>Baskaran, Vishnu Monn</creatorcontrib><creatorcontrib>Lim, Joanne Mun-Yee</creatorcontrib><creatorcontrib>Wong, KokSheik</creatorcontrib><creatorcontrib>See, John</creatorcontrib><creatorcontrib>Tistarelli, Massimo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, JunYi</au><au>Baskaran, Vishnu Monn</au><au>Lim, Joanne Mun-Yee</au><au>Wong, KokSheik</au><au>See, John</au><au>Tistarelli, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ERNet: An Efficient and Reliable Human-Object Interaction Detection Network</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>964</spage><epage>979</epage><pages>964-979</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection. The proposed model employs an efficient multi-scale deformable attention to effectively capture vital HOI features. We also put forward a novel detection attention module to adaptively generate semantically rich instance and interaction tokens. These tokens undergo pre-emptive detections to produce initial region and vector proposals that also serve as queries which enhances the feature refinement process in the transformer decoders. Several impactful enhancements are also applied to improve the HOI representation learning. Additionally, we utilize a predictive uncertainty estimation framework in the instance and interaction classification heads to quantify the uncertainty behind each prediction. By doing so, we can accurately and reliably predict HOIs even under challenging scenarios. Experiment results on the HICO-Det, V-COCO, and HOI-A datasets demonstrate that the proposed model achieves state-of-the-art performance in detection accuracy and training efficiency. Codes are publicly available at https://github.com/Monash-CyPhi-AI-Research-Lab/ernet .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022006</pmid><doi>10.1109/TIP.2022.3231528</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4893-2291</orcidid><orcidid>https://orcid.org/0000-0001-6809-5817</orcidid><orcidid>https://orcid.org/0000-0002-3406-3048</orcidid><orcidid>https://orcid.org/0000-0002-7381-4684</orcidid><orcidid>https://orcid.org/0000-0002-1326-8634</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023, Vol.32, p.964-979 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_37022006 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Attention Autonomous cars Decoders Decoding deformable attention Deformation effects Estimation Feature extraction Formability Human-object interaction detection Humans Object recognition Query processing Training transformer Transformers Uncertainty uncertainty estimation |
title | ERNet: An Efficient and Reliable Human-Object Interaction Detection Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ERNet:%20An%20Efficient%20and%20Reliable%20Human-Object%20Interaction%20Detection%20Network&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Lim,%20JunYi&rft.date=2023&rft.volume=32&rft.spage=964&rft.epage=979&rft.pages=964-979&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2022.3231528&rft_dat=%3Cproquest_pubme%3E2770781932%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-7d640b2c675bbb62189b0f88bb2f901e53e07748cfa9a07c5df540e45dff6e903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770781932&rft_id=info:pmid/37022006&rft_ieee_id=10026602&rfr_iscdi=true |