Loading…
Depletion-driven antiferromagnetic, paramagnetic, and ferromagnetic behavior in quasi-two-dimensional buckled colloidal solids
We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromagnet [Y. Han et al., Nature 456...
Saved in:
Published in: | The Journal of chemical physics 2023-05, Vol.158 (19) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromagnet [Y. Han et al., Nature 456, 898–903 (2008)]. In this contribution, we show that the added depletion attraction can influence both the magnitude and sign of an Ising spin coupling constant. As a result, the nearest-neighbor Ising “spin” interactions can be made to vary from antiferromagnetic to para- and ferromagnetic. Using a simple theory, we compute an effective Ising nearest-neighbor coupling constant, and we show how competition between entropic effects permits for the modification of the coupling constant. We then experimentally demonstrate depletion-induced modification of the coupling constant, including its sign, and other behaviors. Depletion interactions are induced by rod-like surfactant micelles that change length with temperature and thus offer means for tuning the depletion attraction in situ. Buckled colloidal suspensions exhibit a crossover from an Ising antiferromagnetic to paramagnetic phase as a function of increasing depletion attraction. Additional dynamical experiments reveal structural arrest in various regimes of the coupling-constant, driven by different mechanisms. In total, this work introduces novel colloidal matter with “magnetic” features and complex dynamics rarely observed in traditional spin systems. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0146155 |