Loading…
Hamiltonian neural networks with automatic symmetry detection
Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requi...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-06, Vol.33 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requires additional attention. In this research, we enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network. This approach allows us to simultaneously learn the symmetry group action and the total energy of the system. As illustrating examples, a pendulum on a cart and a two-body problem from astrodynamics are considered. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0142969 |