Loading…
MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion
Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2023-10, Vol.45 (10), p.12148-12166 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3 |
container_end_page | 12166 |
container_issue | 10 |
container_start_page | 12148 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Xu, Han Yuan, Jiteng Ma, Jiayi |
description | Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF. |
doi_str_mv | 10.1109/TPAMI.2023.3283682 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37285256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10145843</ieee_id><sourcerecordid>2861453863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIgsePGyNZlp0sRbqVYLXZTSnpfsblK27Idudg_996a2injKkHnmneEh5JrRIWNUPazeJ9F8CBRwiCBRSDghfaZQhchRnZI-ZQJCKUH2yIVzW0rZiFM8Jz0cg-TARZ88Revl7DGIurbTRbELliavbN2kebXxn0Wbh1Gd6SKYl3pjfHeTu7bRbV5Xga6yYNY5X16SM6sLZ66O74CsZ8-r6Wu4eHuZTyeLMEUObSiYsYojpZSPM8VBjVKbZEraJLV8rCxPtM1oYkBT0KAkSl9pMImwieAqwQG5P-R-NPVnZ1wbl7lLTVHoytSdi0ECKkUZ5x69-4du666p_HWeEt4DSoGeggOVNrVzjbHxR5OXutnFjMZ7x_G343jvOD469kO3x-guKU32O_Ij1QM3ByA3xvxJ9FvlCPELlZZ_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861453863</pqid></control><display><type>article</type><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</creator><creatorcontrib>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</creatorcontrib><description>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3283682</identifier><identifier>PMID: 37285256</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer vision ; contrastive learning ; Deformation ; Design methodology ; Image enhancement ; Image fusion ; Image registration ; Information retrieval ; Magnetic resonance imaging ; Measurement ; Medical imaging ; Modal data ; Modules ; Multi-modal images ; Network architecture ; Positron emission ; Registration ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12148-12166</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</citedby><cites>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</cites><orcidid>0000-0002-8829-0238 ; 0000-0002-6291-2924 ; 0000-0003-3264-3265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10145843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37285256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Yuan, Jiteng</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</description><subject>Computer vision</subject><subject>contrastive learning</subject><subject>Deformation</subject><subject>Design methodology</subject><subject>Image enhancement</subject><subject>Image fusion</subject><subject>Image registration</subject><subject>Information retrieval</subject><subject>Magnetic resonance imaging</subject><subject>Measurement</subject><subject>Medical imaging</subject><subject>Modal data</subject><subject>Modules</subject><subject>Multi-modal images</subject><subject>Network architecture</subject><subject>Positron emission</subject><subject>Registration</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIgsePGyNZlp0sRbqVYLXZTSnpfsblK27Idudg_996a2injKkHnmneEh5JrRIWNUPazeJ9F8CBRwiCBRSDghfaZQhchRnZI-ZQJCKUH2yIVzW0rZiFM8Jz0cg-TARZ88Revl7DGIurbTRbELliavbN2kebXxn0Wbh1Gd6SKYl3pjfHeTu7bRbV5Xga6yYNY5X16SM6sLZ66O74CsZ8-r6Wu4eHuZTyeLMEUObSiYsYojpZSPM8VBjVKbZEraJLV8rCxPtM1oYkBT0KAkSl9pMImwieAqwQG5P-R-NPVnZ1wbl7lLTVHoytSdi0ECKkUZ5x69-4du666p_HWeEt4DSoGeggOVNrVzjbHxR5OXutnFjMZ7x_G343jvOD469kO3x-guKU32O_Ij1QM3ByA3xvxJ9FvlCPELlZZ_AA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Xu, Han</creator><creator>Yuan, Jiteng</creator><creator>Ma, Jiayi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8829-0238</orcidid><orcidid>https://orcid.org/0000-0002-6291-2924</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></search><sort><creationdate>20231001</creationdate><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><author>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>contrastive learning</topic><topic>Deformation</topic><topic>Design methodology</topic><topic>Image enhancement</topic><topic>Image fusion</topic><topic>Image registration</topic><topic>Information retrieval</topic><topic>Magnetic resonance imaging</topic><topic>Measurement</topic><topic>Medical imaging</topic><topic>Modal data</topic><topic>Modules</topic><topic>Multi-modal images</topic><topic>Network architecture</topic><topic>Positron emission</topic><topic>Registration</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Yuan, Jiteng</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Han</au><au>Yuan, Jiteng</au><au>Ma, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>12148</spage><epage>12166</epage><pages>12148-12166</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37285256</pmid><doi>10.1109/TPAMI.2023.3283682</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8829-0238</orcidid><orcidid>https://orcid.org/0000-0002-6291-2924</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12148-12166 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_37285256 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computer vision contrastive learning Deformation Design methodology Image enhancement Image fusion Image registration Information retrieval Magnetic resonance imaging Measurement Medical imaging Modal data Modules Multi-modal images Network architecture Positron emission Registration Task analysis |
title | MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MURF:%20Mutually%20Reinforcing%20Multi-Modal%20Image%20Registration%20and%20Fusion&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Xu,%20Han&rft.date=2023-10-01&rft.volume=45&rft.issue=10&rft.spage=12148&rft.epage=12166&rft.pages=12148-12166&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3283682&rft_dat=%3Cproquest_pubme%3E2861453863%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861453863&rft_id=info:pmid/37285256&rft_ieee_id=10145843&rfr_iscdi=true |