Loading…

MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion

Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-10, Vol.45 (10), p.12148-12166
Main Authors: Xu, Han, Yuan, Jiteng, Ma, Jiayi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3
cites cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3
container_end_page 12166
container_issue 10
container_start_page 12148
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Xu, Han
Yuan, Jiteng
Ma, Jiayi
description Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.
doi_str_mv 10.1109/TPAMI.2023.3283682
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37285256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10145843</ieee_id><sourcerecordid>2861453863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIgsePGyNZlp0sRbqVYLXZTSnpfsblK27Idudg_996a2injKkHnmneEh5JrRIWNUPazeJ9F8CBRwiCBRSDghfaZQhchRnZI-ZQJCKUH2yIVzW0rZiFM8Jz0cg-TARZ88Revl7DGIurbTRbELliavbN2kebXxn0Wbh1Gd6SKYl3pjfHeTu7bRbV5Xga6yYNY5X16SM6sLZ66O74CsZ8-r6Wu4eHuZTyeLMEUObSiYsYojpZSPM8VBjVKbZEraJLV8rCxPtM1oYkBT0KAkSl9pMImwieAqwQG5P-R-NPVnZ1wbl7lLTVHoytSdi0ECKkUZ5x69-4du666p_HWeEt4DSoGeggOVNrVzjbHxR5OXutnFjMZ7x_G343jvOD469kO3x-guKU32O_Ij1QM3ByA3xvxJ9FvlCPELlZZ_AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861453863</pqid></control><display><type>article</type><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</creator><creatorcontrib>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</creatorcontrib><description>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3283682</identifier><identifier>PMID: 37285256</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer vision ; contrastive learning ; Deformation ; Design methodology ; Image enhancement ; Image fusion ; Image registration ; Information retrieval ; Magnetic resonance imaging ; Measurement ; Medical imaging ; Modal data ; Modules ; Multi-modal images ; Network architecture ; Positron emission ; Registration ; Task analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12148-12166</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</citedby><cites>FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</cites><orcidid>0000-0002-8829-0238 ; 0000-0002-6291-2924 ; 0000-0003-3264-3265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10145843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37285256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Yuan, Jiteng</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</description><subject>Computer vision</subject><subject>contrastive learning</subject><subject>Deformation</subject><subject>Design methodology</subject><subject>Image enhancement</subject><subject>Image fusion</subject><subject>Image registration</subject><subject>Information retrieval</subject><subject>Magnetic resonance imaging</subject><subject>Measurement</subject><subject>Medical imaging</subject><subject>Modal data</subject><subject>Modules</subject><subject>Multi-modal images</subject><subject>Network architecture</subject><subject>Positron emission</subject><subject>Registration</subject><subject>Task analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIgsePGyNZlp0sRbqVYLXZTSnpfsblK27Idudg_996a2injKkHnmneEh5JrRIWNUPazeJ9F8CBRwiCBRSDghfaZQhchRnZI-ZQJCKUH2yIVzW0rZiFM8Jz0cg-TARZ88Revl7DGIurbTRbELliavbN2kebXxn0Wbh1Gd6SKYl3pjfHeTu7bRbV5Xga6yYNY5X16SM6sLZ66O74CsZ8-r6Wu4eHuZTyeLMEUObSiYsYojpZSPM8VBjVKbZEraJLV8rCxPtM1oYkBT0KAkSl9pMImwieAqwQG5P-R-NPVnZ1wbl7lLTVHoytSdi0ECKkUZ5x69-4du666p_HWeEt4DSoGeggOVNrVzjbHxR5OXutnFjMZ7x_G343jvOD469kO3x-guKU32O_Ij1QM3ByA3xvxJ9FvlCPELlZZ_AA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Xu, Han</creator><creator>Yuan, Jiteng</creator><creator>Ma, Jiayi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8829-0238</orcidid><orcidid>https://orcid.org/0000-0002-6291-2924</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></search><sort><creationdate>20231001</creationdate><title>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</title><author>Xu, Han ; Yuan, Jiteng ; Ma, Jiayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer vision</topic><topic>contrastive learning</topic><topic>Deformation</topic><topic>Design methodology</topic><topic>Image enhancement</topic><topic>Image fusion</topic><topic>Image registration</topic><topic>Information retrieval</topic><topic>Magnetic resonance imaging</topic><topic>Measurement</topic><topic>Medical imaging</topic><topic>Modal data</topic><topic>Modules</topic><topic>Multi-modal images</topic><topic>Network architecture</topic><topic>Positron emission</topic><topic>Registration</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Yuan, Jiteng</creatorcontrib><creatorcontrib>Ma, Jiayi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Han</au><au>Yuan, Jiteng</au><au>Ma, Jiayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>45</volume><issue>10</issue><spage>12148</spage><epage>12166</epage><pages>12148-12166</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Existing image fusion methods are typically limited to aligned source images and have to "tolerate" parallaxes when images are unaligned. Simultaneously, the large variances between different modalities pose a significant challenge for multi-modal image registration. This study proposes a novel method called MURF, where for the first time, image registration and fusion are mutually reinforced rather than being treated as separate issues. MURF leverages three modules: shared information extraction module (SIEM), multi-scale coarse registration module (MCRM), and fine registration and fusion module (F2M). The registration is carried out in a coarse-to-fine manner. During coarse registration, SIEM first transforms multi-modal images into mono-modal shared information to eliminate the modal variances. Then, MCRM progressively corrects the global rigid parallaxes. Subsequently, fine registration to repair local non-rigid offsets and image fusion are uniformly implemented in F2M. The fused image provides feedback to improve registration accuracy, and the improved registration result further improves the fusion result. For image fusion, rather than solely preserving the original source information in existing methods, we attempt to incorporate texture enhancement into image fusion. We test on four types of multi-modal data (RGB-IR, RGB-NIR, PET-MRI, and CT-MRI). Extensive registration and fusion results validate the superiority and universality of MURF.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37285256</pmid><doi>10.1109/TPAMI.2023.3283682</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8829-0238</orcidid><orcidid>https://orcid.org/0000-0002-6291-2924</orcidid><orcidid>https://orcid.org/0000-0003-3264-3265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-10, Vol.45 (10), p.12148-12166
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_37285256
source IEEE Electronic Library (IEL) Journals
subjects Computer vision
contrastive learning
Deformation
Design methodology
Image enhancement
Image fusion
Image registration
Information retrieval
Magnetic resonance imaging
Measurement
Medical imaging
Modal data
Modules
Multi-modal images
Network architecture
Positron emission
Registration
Task analysis
title MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MURF:%20Mutually%20Reinforcing%20Multi-Modal%20Image%20Registration%20and%20Fusion&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Xu,%20Han&rft.date=2023-10-01&rft.volume=45&rft.issue=10&rft.spage=12148&rft.epage=12166&rft.pages=12148-12166&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3283682&rft_dat=%3Cproquest_pubme%3E2861453863%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-61ef95300057d95294cfbd98fbcf579f5bafd0be2a02a298382a0a2eb6fb659b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861453863&rft_id=info:pmid/37285256&rft_ieee_id=10145843&rfr_iscdi=true