Loading…
What can we learn from epidemiological studies on chronic boron exposure?
Boric acid and sodium borates are classified as toxic to reproduction and development under category 1B, with the hazard statement of H360FD (May damage fertility. May damage the unborn child) in the EU-CLP regulation. This classification triggered environmental and occupational epidemiology studies...
Saved in:
Published in: | Critical reviews in toxicology 2023-03, Vol.53 (3), p.168-180 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boric acid and sodium borates are classified as toxic to reproduction and development under category 1B, with the hazard statement of H360FD (May damage fertility. May damage the unborn child) in the EU-CLP regulation. This classification triggered environmental and occupational epidemiology studies on boron in China, Türkiye, and Argentina. The highest mean total daily boron exposure (DBE) levels in mining areas or processing plants in China and Türkiye were 41.2 and 47.17 mg/day, respectively. These DBE levels are higher than the proposed reference doses (RfDs) for the developmental (9.6 mg B/day) and reproductive effects (20.3 mg B/day) of boron in females and males. Despite these high exposure levels in occupational settings, boron-mediated reproductive and developmental effects have not been reported. Blood (or serum) boron concentrations were also reported in these studies. The highest mean blood-boron concentration reported for the boron-exposed male workers in Türkiye is 570.6 ng B/g (ppb). This blood-boron concentration is still much lower than the blood boron concentrations corresponding to the no observed adverse effect level (NOAEL) for both developmental and reproductive effects in rats. Given the blood boron concentrations reported in current epidemiological studies, the lack of reproductive and developmental effects in humans is not surprising. Recent epidemiological studies have proven that it will not be possible to reach the critical blood boron concentrations in humans for the reproductive and developmental effects, especially in daily life. |
---|---|
ISSN: | 1040-8444 1547-6898 |
DOI: | 10.1080/10408444.2023.2222151 |