Loading…
Theoretical Exploration of Flexible Transmitter Model
Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model dev...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-03, Vol.PP (3), p.1-15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 15 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Wu, Jin-Hui Zhang, Shao-Qun Jiang, Yuan Zhou, Zhi-Hua |
description | Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms. |
doi_str_mv | 10.1109/TNNLS.2022.3195909 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37494173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195872</ieee_id><sourcerecordid>2843036651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMottT-AREZcONmar4mkyyltCrUunAEd2E-XnDKdFKTGaj_3tTWImbzsjj38t5B6JLgCSFY3WXL5eJ1QjGlE0ZUorA6QUNKBI0pk_L0-E_fB2js_QqHJ3AiuDpHA5ZyxUnKhijJPsA66Ooyb6LZdtNYl3e1bSNronkD27poIMpc3vp13XXgomdbQXOBzkzeeBgf5gi9zWfZ9DFevDw8Te8Xccl42sWFNEllBGcJrhJeKAW4BExyVQDlRCpWSmOkxIIWFMpwhKQpZ6ngsjAyF4qN0O2-d-PsZw--0-val9A0eQu295pKzjATIiEBvfmHrmzv2rCdpooxQbBgNFB0T5XOeu_A6I2r17n70gTrnVf941XvvOqD1xC6PlT3xRqqY-TXYgCu9kANAH8aQ16mlH0DpWp6Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610632</pqid></control><display><type>article</type><title>Theoretical Exploration of Flexible Transmitter Model</title><source>IEEE Xplore (Online service)</source><creator>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</creator><creatorcontrib>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</creatorcontrib><description>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3195909</identifier><identifier>PMID: 37494173</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation complexity ; Biological neural networks ; Biological system modeling ; Complexity theory ; Data models ; Firing pattern ; flexible transmitter (FT) model ; local minimum ; Neural networks ; Neurons ; Recurrent neural networks ; Search algorithms ; Transmitters</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-03, Vol.PP (3), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4164-4617 ; 0000-0002-0614-8984 ; 0000-0003-0746-1494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37494173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jin-Hui</creatorcontrib><creatorcontrib>Zhang, Shao-Qun</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><title>Theoretical Exploration of Flexible Transmitter Model</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</description><subject>Approximation complexity</subject><subject>Biological neural networks</subject><subject>Biological system modeling</subject><subject>Complexity theory</subject><subject>Data models</subject><subject>Firing pattern</subject><subject>flexible transmitter (FT) model</subject><subject>local minimum</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Search algorithms</subject><subject>Transmitters</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEURYMottT-AREZcONmar4mkyyltCrUunAEd2E-XnDKdFKTGaj_3tTWImbzsjj38t5B6JLgCSFY3WXL5eJ1QjGlE0ZUorA6QUNKBI0pk_L0-E_fB2js_QqHJ3AiuDpHA5ZyxUnKhijJPsA66Ooyb6LZdtNYl3e1bSNronkD27poIMpc3vp13XXgomdbQXOBzkzeeBgf5gi9zWfZ9DFevDw8Te8Xccl42sWFNEllBGcJrhJeKAW4BExyVQDlRCpWSmOkxIIWFMpwhKQpZ6ngsjAyF4qN0O2-d-PsZw--0-val9A0eQu295pKzjATIiEBvfmHrmzv2rCdpooxQbBgNFB0T5XOeu_A6I2r17n70gTrnVf941XvvOqD1xC6PlT3xRqqY-TXYgCu9kANAH8aQ16mlH0DpWp6Og</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wu, Jin-Hui</creator><creator>Zhang, Shao-Qun</creator><creator>Jiang, Yuan</creator><creator>Zhou, Zhi-Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4164-4617</orcidid><orcidid>https://orcid.org/0000-0002-0614-8984</orcidid><orcidid>https://orcid.org/0000-0003-0746-1494</orcidid></search><sort><creationdate>20240301</creationdate><title>Theoretical Exploration of Flexible Transmitter Model</title><author>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation complexity</topic><topic>Biological neural networks</topic><topic>Biological system modeling</topic><topic>Complexity theory</topic><topic>Data models</topic><topic>Firing pattern</topic><topic>flexible transmitter (FT) model</topic><topic>local minimum</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Search algorithms</topic><topic>Transmitters</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jin-Hui</creatorcontrib><creatorcontrib>Zhang, Shao-Qun</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jin-Hui</au><au>Zhang, Shao-Qun</au><au>Jiang, Yuan</au><au>Zhou, Zhi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Exploration of Flexible Transmitter Model</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>PP</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37494173</pmid><doi>10.1109/TNNLS.2022.3195909</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4164-4617</orcidid><orcidid>https://orcid.org/0000-0002-0614-8984</orcidid><orcidid>https://orcid.org/0000-0003-0746-1494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-03, Vol.PP (3), p.1-15 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_37494173 |
source | IEEE Xplore (Online service) |
subjects | Approximation complexity Biological neural networks Biological system modeling Complexity theory Data models Firing pattern flexible transmitter (FT) model local minimum Neural networks Neurons Recurrent neural networks Search algorithms Transmitters |
title | Theoretical Exploration of Flexible Transmitter Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Exploration%20of%20Flexible%20Transmitter%20Model&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wu,%20Jin-Hui&rft.date=2024-03-01&rft.volume=PP&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3195909&rft_dat=%3Cproquest_pubme%3E2843036651%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933610632&rft_id=info:pmid/37494173&rft_ieee_id=10195872&rfr_iscdi=true |