Loading…

Theoretical Exploration of Flexible Transmitter Model

Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model dev...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-03, Vol.PP (3), p.1-15
Main Authors: Wu, Jin-Hui, Zhang, Shao-Qun, Jiang, Yuan, Zhou, Zhi-Hua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15
container_issue 3
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Wu, Jin-Hui
Zhang, Shao-Qun
Jiang, Yuan
Zhou, Zhi-Hua
description Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.
doi_str_mv 10.1109/TNNLS.2022.3195909
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37494173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195872</ieee_id><sourcerecordid>2843036651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMottT-AREZcONmar4mkyyltCrUunAEd2E-XnDKdFKTGaj_3tTWImbzsjj38t5B6JLgCSFY3WXL5eJ1QjGlE0ZUorA6QUNKBI0pk_L0-E_fB2js_QqHJ3AiuDpHA5ZyxUnKhijJPsA66Ooyb6LZdtNYl3e1bSNronkD27poIMpc3vp13XXgomdbQXOBzkzeeBgf5gi9zWfZ9DFevDw8Te8Xccl42sWFNEllBGcJrhJeKAW4BExyVQDlRCpWSmOkxIIWFMpwhKQpZ6ngsjAyF4qN0O2-d-PsZw--0-val9A0eQu295pKzjATIiEBvfmHrmzv2rCdpooxQbBgNFB0T5XOeu_A6I2r17n70gTrnVf941XvvOqD1xC6PlT3xRqqY-TXYgCu9kANAH8aQ16mlH0DpWp6Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610632</pqid></control><display><type>article</type><title>Theoretical Exploration of Flexible Transmitter Model</title><source>IEEE Xplore (Online service)</source><creator>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</creator><creatorcontrib>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</creatorcontrib><description>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3195909</identifier><identifier>PMID: 37494173</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation complexity ; Biological neural networks ; Biological system modeling ; Complexity theory ; Data models ; Firing pattern ; flexible transmitter (FT) model ; local minimum ; Neural networks ; Neurons ; Recurrent neural networks ; Search algorithms ; Transmitters</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-03, Vol.PP (3), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4164-4617 ; 0000-0002-0614-8984 ; 0000-0003-0746-1494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37494173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jin-Hui</creatorcontrib><creatorcontrib>Zhang, Shao-Qun</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><title>Theoretical Exploration of Flexible Transmitter Model</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</description><subject>Approximation complexity</subject><subject>Biological neural networks</subject><subject>Biological system modeling</subject><subject>Complexity theory</subject><subject>Data models</subject><subject>Firing pattern</subject><subject>flexible transmitter (FT) model</subject><subject>local minimum</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Search algorithms</subject><subject>Transmitters</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEURYMottT-AREZcONmar4mkyyltCrUunAEd2E-XnDKdFKTGaj_3tTWImbzsjj38t5B6JLgCSFY3WXL5eJ1QjGlE0ZUorA6QUNKBI0pk_L0-E_fB2js_QqHJ3AiuDpHA5ZyxUnKhijJPsA66Ooyb6LZdtNYl3e1bSNronkD27poIMpc3vp13XXgomdbQXOBzkzeeBgf5gi9zWfZ9DFevDw8Te8Xccl42sWFNEllBGcJrhJeKAW4BExyVQDlRCpWSmOkxIIWFMpwhKQpZ6ngsjAyF4qN0O2-d-PsZw--0-val9A0eQu295pKzjATIiEBvfmHrmzv2rCdpooxQbBgNFB0T5XOeu_A6I2r17n70gTrnVf941XvvOqD1xC6PlT3xRqqY-TXYgCu9kANAH8aQ16mlH0DpWp6Og</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wu, Jin-Hui</creator><creator>Zhang, Shao-Qun</creator><creator>Jiang, Yuan</creator><creator>Zhou, Zhi-Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4164-4617</orcidid><orcidid>https://orcid.org/0000-0002-0614-8984</orcidid><orcidid>https://orcid.org/0000-0003-0746-1494</orcidid></search><sort><creationdate>20240301</creationdate><title>Theoretical Exploration of Flexible Transmitter Model</title><author>Wu, Jin-Hui ; Zhang, Shao-Qun ; Jiang, Yuan ; Zhou, Zhi-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation complexity</topic><topic>Biological neural networks</topic><topic>Biological system modeling</topic><topic>Complexity theory</topic><topic>Data models</topic><topic>Firing pattern</topic><topic>flexible transmitter (FT) model</topic><topic>local minimum</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Search algorithms</topic><topic>Transmitters</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jin-Hui</creatorcontrib><creatorcontrib>Zhang, Shao-Qun</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Zhou, Zhi-Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jin-Hui</au><au>Zhang, Shao-Qun</au><au>Jiang, Yuan</au><au>Zhou, Zhi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Exploration of Flexible Transmitter Model</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>PP</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Neural network models generally involve two important components, i.e., network architecture and neuron model. Although there are abundant studies about network architectures, only a few neuron models have been developed, such as the MP neuron model developed in 1943 and the spiking neuron model developed in the 1950s. Recently, a new bio-plausible neuron model, flexible transmitter (FT) model (Zhang and Zhou, 2021), has been proposed. It exhibits promising behaviors, particularly on temporal-spatial signals, even when simply embedded into the common feedforward network architecture. This article attempts to understand the properties of the FT network (FTNet) theoretically. Under mild assumptions, we show that: 1) FTNet is a universal approximator; 2) the approximation complexity of FTNet can be exponentially smaller than those of commonly used real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; and 3) any local minimum of FTNet is the global minimum, implying that it is possible to identify global minima by local search algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37494173</pmid><doi>10.1109/TNNLS.2022.3195909</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4164-4617</orcidid><orcidid>https://orcid.org/0000-0002-0614-8984</orcidid><orcidid>https://orcid.org/0000-0003-0746-1494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-03, Vol.PP (3), p.1-15
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_37494173
source IEEE Xplore (Online service)
subjects Approximation complexity
Biological neural networks
Biological system modeling
Complexity theory
Data models
Firing pattern
flexible transmitter (FT) model
local minimum
Neural networks
Neurons
Recurrent neural networks
Search algorithms
Transmitters
title Theoretical Exploration of Flexible Transmitter Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Exploration%20of%20Flexible%20Transmitter%20Model&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wu,%20Jin-Hui&rft.date=2024-03-01&rft.volume=PP&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3195909&rft_dat=%3Cproquest_pubme%3E2843036651%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-b8f5df64350d54b99e0ce01a9be241893c8ff88062b2ec959827437648bf8a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933610632&rft_id=info:pmid/37494173&rft_ieee_id=10195872&rfr_iscdi=true