Loading…

Surface-strain-enhanced oxygen dissociation on gold catalysts

The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2023-07, Vol.13 (33), p.2271-22716
Main Authors: Gao, Tianqi, Shen, Yongli, Gu, Lin, Zhang, Zhaocheng, Yuan, Wenjuan, Xi, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323
container_end_page 22716
container_issue 33
container_start_page 2271
container_title RSC advances
container_volume 13
creator Gao, Tianqi
Shen, Yongli
Gu, Lin
Zhang, Zhaocheng
Yuan, Wenjuan
Xi, Wei
description The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O 2 . The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation. The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.
doi_str_mv 10.1039/d3ra03781a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37502824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847267494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMottRevCsFLyKsZpNsNjmIlPoEQfBxXrJ5tFu2SU12xf73prbWahhImPkx82U-AA5TeJ5CzC8U9gLinKViB3QRJDRBkPLdrXcH9EOYwnholiKa7oMOzjOIGCJdcPnSeiOkTkLjRWUTbSfCSq0G7nMx1nagqhCcrERTOTuIMXa1GkjRiHoRmnAA9oyog-6v7x54u715Hd0nj093D6PhYyIxY01CsFHYmJJQLHODaG44oSw3MjOwFKkSChlueBnTOaMUM0WpzJVmackNxgj3wNWq77wtZ1pJbaPaupj7aib8onCiKv5WbDUpxu6jiCuifBk9cLru4N17q0NTzKogdV0Lq10bCsQyQhAlcIme_EOnrvU2_i9SJI_yCSeROltR0rsQvDYbNSlcjuXFNX4efjszjPDxtv4N-uNDBI5WgA9yU_21Fn8BFDSTNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847267494</pqid></control><display><type>article</type><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><source>Open Access: PubMed Central</source><creator>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</creator><creatorcontrib>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</creatorcontrib><description>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O 2 . The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation. The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra03781a</identifier><identifier>PMID: 37502824</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemistry ; First principles ; Gold ; Low temperature ; Mass spectrometry ; Nitrogen ; Oxidation ; Oxygen atoms ; Strain analysis ; Tensile strain</subject><ispartof>RSC advances, 2023-07, Vol.13 (33), p.2271-22716</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</cites><orcidid>0000-0001-9697-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369369/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37502824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>Shen, Yongli</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Yuan, Wenjuan</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O 2 . The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation. The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</description><subject>Catalysts</subject><subject>Chemistry</subject><subject>First principles</subject><subject>Gold</subject><subject>Low temperature</subject><subject>Mass spectrometry</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Oxygen atoms</subject><subject>Strain analysis</subject><subject>Tensile strain</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctLAzEQxoMottRevCsFLyKsZpNsNjmIlPoEQfBxXrJ5tFu2SU12xf73prbWahhImPkx82U-AA5TeJ5CzC8U9gLinKViB3QRJDRBkPLdrXcH9EOYwnholiKa7oMOzjOIGCJdcPnSeiOkTkLjRWUTbSfCSq0G7nMx1nagqhCcrERTOTuIMXa1GkjRiHoRmnAA9oyog-6v7x54u715Hd0nj093D6PhYyIxY01CsFHYmJJQLHODaG44oSw3MjOwFKkSChlueBnTOaMUM0WpzJVmackNxgj3wNWq77wtZ1pJbaPaupj7aib8onCiKv5WbDUpxu6jiCuifBk9cLru4N17q0NTzKogdV0Lq10bCsQyQhAlcIme_EOnrvU2_i9SJI_yCSeROltR0rsQvDYbNSlcjuXFNX4efjszjPDxtv4N-uNDBI5WgA9yU_21Fn8BFDSTNQ</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Gao, Tianqi</creator><creator>Shen, Yongli</creator><creator>Gu, Lin</creator><creator>Zhang, Zhaocheng</creator><creator>Yuan, Wenjuan</creator><creator>Xi, Wei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9697-6187</orcidid></search><sort><creationdate>20230726</creationdate><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><author>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemistry</topic><topic>First principles</topic><topic>Gold</topic><topic>Low temperature</topic><topic>Mass spectrometry</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Oxygen atoms</topic><topic>Strain analysis</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>Shen, Yongli</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Yuan, Wenjuan</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Tianqi</au><au>Shen, Yongli</au><au>Gu, Lin</au><au>Zhang, Zhaocheng</au><au>Yuan, Wenjuan</au><au>Xi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-strain-enhanced oxygen dissociation on gold catalysts</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>13</volume><issue>33</issue><spage>2271</spage><epage>22716</epage><pages>2271-22716</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O 2 . The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation. The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37502824</pmid><doi>10.1039/d3ra03781a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9697-6187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2023-07, Vol.13 (33), p.2271-22716
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_37502824
source Open Access: PubMed Central
subjects Catalysts
Chemistry
First principles
Gold
Low temperature
Mass spectrometry
Nitrogen
Oxidation
Oxygen atoms
Strain analysis
Tensile strain
title Surface-strain-enhanced oxygen dissociation on gold catalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-strain-enhanced%20oxygen%20dissociation%20on%20gold%20catalysts&rft.jtitle=RSC%20advances&rft.au=Gao,%20Tianqi&rft.date=2023-07-26&rft.volume=13&rft.issue=33&rft.spage=2271&rft.epage=22716&rft.pages=2271-22716&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra03781a&rft_dat=%3Cproquest_pubme%3E2847267494%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847267494&rft_id=info:pmid/37502824&rfr_iscdi=true