Loading…
Surface-strain-enhanced oxygen dissociation on gold catalysts
The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined. In situ electron microscopy and mass spectrometry results show that nitrogen...
Saved in:
Published in: | RSC advances 2023-07, Vol.13 (33), p.2271-22716 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323 |
container_end_page | 22716 |
container_issue | 33 |
container_start_page | 2271 |
container_title | RSC advances |
container_volume | 13 |
creator | Gao, Tianqi Shen, Yongli Gu, Lin Zhang, Zhaocheng Yuan, Wenjuan Xi, Wei |
description | The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined.
In situ
electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O
2
. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.
The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms. |
doi_str_mv | 10.1039/d3ra03781a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37502824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847267494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMottRevCsFLyKsZpNsNjmIlPoEQfBxXrJ5tFu2SU12xf73prbWahhImPkx82U-AA5TeJ5CzC8U9gLinKViB3QRJDRBkPLdrXcH9EOYwnholiKa7oMOzjOIGCJdcPnSeiOkTkLjRWUTbSfCSq0G7nMx1nagqhCcrERTOTuIMXa1GkjRiHoRmnAA9oyog-6v7x54u715Hd0nj093D6PhYyIxY01CsFHYmJJQLHODaG44oSw3MjOwFKkSChlueBnTOaMUM0WpzJVmackNxgj3wNWq77wtZ1pJbaPaupj7aib8onCiKv5WbDUpxu6jiCuifBk9cLru4N17q0NTzKogdV0Lq10bCsQyQhAlcIme_EOnrvU2_i9SJI_yCSeROltR0rsQvDYbNSlcjuXFNX4efjszjPDxtv4N-uNDBI5WgA9yU_21Fn8BFDSTNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847267494</pqid></control><display><type>article</type><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><source>Open Access: PubMed Central</source><creator>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</creator><creatorcontrib>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</creatorcontrib><description>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined.
In situ
electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O
2
. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.
The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra03781a</identifier><identifier>PMID: 37502824</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemistry ; First principles ; Gold ; Low temperature ; Mass spectrometry ; Nitrogen ; Oxidation ; Oxygen atoms ; Strain analysis ; Tensile strain</subject><ispartof>RSC advances, 2023-07, Vol.13 (33), p.2271-22716</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</cites><orcidid>0000-0001-9697-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369369/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369369/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37502824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>Shen, Yongli</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Yuan, Wenjuan</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined.
In situ
electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O
2
. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.
The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</description><subject>Catalysts</subject><subject>Chemistry</subject><subject>First principles</subject><subject>Gold</subject><subject>Low temperature</subject><subject>Mass spectrometry</subject><subject>Nitrogen</subject><subject>Oxidation</subject><subject>Oxygen atoms</subject><subject>Strain analysis</subject><subject>Tensile strain</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctLAzEQxoMottRevCsFLyKsZpNsNjmIlPoEQfBxXrJ5tFu2SU12xf73prbWahhImPkx82U-AA5TeJ5CzC8U9gLinKViB3QRJDRBkPLdrXcH9EOYwnholiKa7oMOzjOIGCJdcPnSeiOkTkLjRWUTbSfCSq0G7nMx1nagqhCcrERTOTuIMXa1GkjRiHoRmnAA9oyog-6v7x54u715Hd0nj093D6PhYyIxY01CsFHYmJJQLHODaG44oSw3MjOwFKkSChlueBnTOaMUM0WpzJVmackNxgj3wNWq77wtZ1pJbaPaupj7aib8onCiKv5WbDUpxu6jiCuifBk9cLru4N17q0NTzKogdV0Lq10bCsQyQhAlcIme_EOnrvU2_i9SJI_yCSeROltR0rsQvDYbNSlcjuXFNX4efjszjPDxtv4N-uNDBI5WgA9yU_21Fn8BFDSTNQ</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Gao, Tianqi</creator><creator>Shen, Yongli</creator><creator>Gu, Lin</creator><creator>Zhang, Zhaocheng</creator><creator>Yuan, Wenjuan</creator><creator>Xi, Wei</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9697-6187</orcidid></search><sort><creationdate>20230726</creationdate><title>Surface-strain-enhanced oxygen dissociation on gold catalysts</title><author>Gao, Tianqi ; Shen, Yongli ; Gu, Lin ; Zhang, Zhaocheng ; Yuan, Wenjuan ; Xi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemistry</topic><topic>First principles</topic><topic>Gold</topic><topic>Low temperature</topic><topic>Mass spectrometry</topic><topic>Nitrogen</topic><topic>Oxidation</topic><topic>Oxygen atoms</topic><topic>Strain analysis</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Tianqi</creatorcontrib><creatorcontrib>Shen, Yongli</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Zhaocheng</creatorcontrib><creatorcontrib>Yuan, Wenjuan</creatorcontrib><creatorcontrib>Xi, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Tianqi</au><au>Shen, Yongli</au><au>Gu, Lin</au><au>Zhang, Zhaocheng</au><au>Yuan, Wenjuan</au><au>Xi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-strain-enhanced oxygen dissociation on gold catalysts</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>13</volume><issue>33</issue><spage>2271</spage><epage>22716</epage><pages>2271-22716</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The excellent low-temperature oxidation performance and stability of nanogold catalysts have attracted significant interest. However, the main active source of the low-temperature oxidation of gold remains to be determined.
In situ
electron microscopy and mass spectrometry results show that nitrogen is oxidized, and the catalyst surface undergoes reconstruction during the process. Strain analysis of the catalyst surface and first-principles calculations show that the tensile strain of the catalyst surface affects the oxidation performance of gold catalysts by enhancing the adsorption ability and dissociation of O
2
. The newly formed active oxygen atoms on the gold surface act as active sites in the nitrogen oxidation reaction, significantly enhancing the oxidation ability of gold catalysts. This study provides evidence for the dissociation mechanism of oxygen on the gold surface and new design concepts for improving the oxidation activity of gold catalysts and nitrogen activation.
The tensile strain on the gold surface enhanced oxidation activity by inducing the formation of active oxygen atoms.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37502824</pmid><doi>10.1039/d3ra03781a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9697-6187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2023-07, Vol.13 (33), p.2271-22716 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_37502824 |
source | Open Access: PubMed Central |
subjects | Catalysts Chemistry First principles Gold Low temperature Mass spectrometry Nitrogen Oxidation Oxygen atoms Strain analysis Tensile strain |
title | Surface-strain-enhanced oxygen dissociation on gold catalysts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-strain-enhanced%20oxygen%20dissociation%20on%20gold%20catalysts&rft.jtitle=RSC%20advances&rft.au=Gao,%20Tianqi&rft.date=2023-07-26&rft.volume=13&rft.issue=33&rft.spage=2271&rft.epage=22716&rft.pages=2271-22716&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra03781a&rft_dat=%3Cproquest_pubme%3E2847267494%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-43fd3ffb463c7f267f94687fc5f0ba1dad2f9f9bf94786638d66c7de81b9f3323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847267494&rft_id=info:pmid/37502824&rfr_iscdi=true |