Loading…
Subgroup Identification Using Virtual Twins for Human Microbiome Studies
Even when the same treatment is employed, some patients are cured, while others are not. The patients that are cured may have beneficial microbes in their body that can boost treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects can vary depending on...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2023-11, Vol.20 (6), p.3800-3808 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-1c283c6646c99ce6685b622df73e714bca97e27cc7385105fd8d11a26566a233 |
container_end_page | 3808 |
container_issue | 6 |
container_start_page | 3800 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 20 |
creator | Koh, Hyunwook |
description | Even when the same treatment is employed, some patients are cured, while others are not. The patients that are cured may have beneficial microbes in their body that can boost treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects can vary depending on the patient's microbiome. If the effects of candidate treatments are well-predicted based on the patient's microbiome, we can select a treatment that is suited to the patient's microbiome or alter the patient's microbiome to improve treatment effects. Here, I introduce a streamlined analytic method, microbiome virtual twins (MiVT), to probe for the interplay between microbiome and treatment. MiVT employs a new prediction method, distance-based machine learning (dML), to improve prediction accuracy in microbiome studies and a new significance test, bootstrap-based test for regression tree (BoRT), to test if each subgroup's treatment effect is the same with the overall treatment effect. MiVT will serve as a useful guideline in microbiome-based personalized medicine to select the therapy that is most suited to the patient's microbiome or to tune the patient's microbiome to be suited to the treatment. |
doi_str_mv | 10.1109/TCBB.2023.3324139 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37831574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285385</ieee_id><sourcerecordid>2877377927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-1c283c6646c99ce6685b622df73e714bca97e27cc7385105fd8d11a26566a233</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoTqc_QBApeONNZz6apLl0Q91g4sWqtyFN05GxNjNpEP-9LZsiXp1z8bwv5zwAXCE4QQiK-2I2nU4wxGRCCM4QEUfgDFHKUyFYdjzsGU2pYGQEzkPYQIgzAbNTMCI8J4jy7AzMV7Fcexd3yaIybWdrq1VnXZu8Bduuk3fru6i2SfFp25DUzifz2Kg2ebHau9K6xiSrLlbWhAtwUqttMJeHOQbF02Mxm6fL1-fF7GGZagJxlyKNc6IZy5gWQhvGcloyjKuaE8NRVmoluMFca05yiiCtq7xCSGFGGVOYkDG429fuvPuIJnSysUGb7Va1xsUgcc454Vxg3qO3_9CNi77tj5NYQEZFf1DeU2hP9Q-F4E0td942yn9JBOVgWQ6W5WBZHiz3mZtDcywbU_0mfrT2wPUesMaYP4U4p_1b5BuMd38t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906593028</pqid></control><display><type>article</type><title>Subgroup Identification Using Virtual Twins for Human Microbiome Studies</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Koh, Hyunwook</creator><creatorcontrib>Koh, Hyunwook</creatorcontrib><description>Even when the same treatment is employed, some patients are cured, while others are not. The patients that are cured may have beneficial microbes in their body that can boost treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects can vary depending on the patient's microbiome. If the effects of candidate treatments are well-predicted based on the patient's microbiome, we can select a treatment that is suited to the patient's microbiome or alter the patient's microbiome to improve treatment effects. Here, I introduce a streamlined analytic method, microbiome virtual twins (MiVT), to probe for the interplay between microbiome and treatment. MiVT employs a new prediction method, distance-based machine learning (dML), to improve prediction accuracy in microbiome studies and a new significance test, bootstrap-based test for regression tree (BoRT), to test if each subgroup's treatment effect is the same with the overall treatment effect. MiVT will serve as a useful guideline in microbiome-based personalized medicine to select the therapy that is most suited to the patient's microbiome or to tune the patient's microbiome to be suited to the treatment.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3324139</identifier><identifier>PMID: 37831574</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; cancer immunotherapy ; Digital twins ; Human microbiome ; Humans ; Machine Learning ; Mice ; Microbiomes ; Microbiota - genetics ; Microorganisms ; Patients ; personalized medicine ; Phylogeny ; Precision Medicine ; Regression analysis ; Sequential analysis ; subgroup identification ; Subgroups ; virtual twins</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3800-3808</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-1c283c6646c99ce6685b622df73e714bca97e27cc7385105fd8d11a26566a233</cites><orcidid>0000-0001-6893-7164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10285385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37831574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koh, Hyunwook</creatorcontrib><title>Subgroup Identification Using Virtual Twins for Human Microbiome Studies</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Even when the same treatment is employed, some patients are cured, while others are not. The patients that are cured may have beneficial microbes in their body that can boost treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects can vary depending on the patient's microbiome. If the effects of candidate treatments are well-predicted based on the patient's microbiome, we can select a treatment that is suited to the patient's microbiome or alter the patient's microbiome to improve treatment effects. Here, I introduce a streamlined analytic method, microbiome virtual twins (MiVT), to probe for the interplay between microbiome and treatment. MiVT employs a new prediction method, distance-based machine learning (dML), to improve prediction accuracy in microbiome studies and a new significance test, bootstrap-based test for regression tree (BoRT), to test if each subgroup's treatment effect is the same with the overall treatment effect. MiVT will serve as a useful guideline in microbiome-based personalized medicine to select the therapy that is most suited to the patient's microbiome or to tune the patient's microbiome to be suited to the treatment.</description><subject>Cancer</subject><subject>cancer immunotherapy</subject><subject>Digital twins</subject><subject>Human microbiome</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Mice</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Microorganisms</subject><subject>Patients</subject><subject>personalized medicine</subject><subject>Phylogeny</subject><subject>Precision Medicine</subject><subject>Regression analysis</subject><subject>Sequential analysis</subject><subject>subgroup identification</subject><subject>Subgroups</subject><subject>virtual twins</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoTqc_QBApeONNZz6apLl0Q91g4sWqtyFN05GxNjNpEP-9LZsiXp1z8bwv5zwAXCE4QQiK-2I2nU4wxGRCCM4QEUfgDFHKUyFYdjzsGU2pYGQEzkPYQIgzAbNTMCI8J4jy7AzMV7Fcexd3yaIybWdrq1VnXZu8Bduuk3fru6i2SfFp25DUzifz2Kg2ebHau9K6xiSrLlbWhAtwUqttMJeHOQbF02Mxm6fL1-fF7GGZagJxlyKNc6IZy5gWQhvGcloyjKuaE8NRVmoluMFca05yiiCtq7xCSGFGGVOYkDG429fuvPuIJnSysUGb7Va1xsUgcc454Vxg3qO3_9CNi77tj5NYQEZFf1DeU2hP9Q-F4E0td942yn9JBOVgWQ6W5WBZHiz3mZtDcywbU_0mfrT2wPUesMaYP4U4p_1b5BuMd38t</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Koh, Hyunwook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6893-7164</orcidid></search><sort><creationdate>202311</creationdate><title>Subgroup Identification Using Virtual Twins for Human Microbiome Studies</title><author>Koh, Hyunwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-1c283c6646c99ce6685b622df73e714bca97e27cc7385105fd8d11a26566a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>cancer immunotherapy</topic><topic>Digital twins</topic><topic>Human microbiome</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Mice</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Microorganisms</topic><topic>Patients</topic><topic>personalized medicine</topic><topic>Phylogeny</topic><topic>Precision Medicine</topic><topic>Regression analysis</topic><topic>Sequential analysis</topic><topic>subgroup identification</topic><topic>Subgroups</topic><topic>virtual twins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Hyunwook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Hyunwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgroup Identification Using Virtual Twins for Human Microbiome Studies</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-11</date><risdate>2023</risdate><volume>20</volume><issue>6</issue><spage>3800</spage><epage>3808</epage><pages>3800-3808</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Even when the same treatment is employed, some patients are cured, while others are not. The patients that are cured may have beneficial microbes in their body that can boost treatment effects, but it is vice versa for the patients that are not cured. That is, treatment effects can vary depending on the patient's microbiome. If the effects of candidate treatments are well-predicted based on the patient's microbiome, we can select a treatment that is suited to the patient's microbiome or alter the patient's microbiome to improve treatment effects. Here, I introduce a streamlined analytic method, microbiome virtual twins (MiVT), to probe for the interplay between microbiome and treatment. MiVT employs a new prediction method, distance-based machine learning (dML), to improve prediction accuracy in microbiome studies and a new significance test, bootstrap-based test for regression tree (BoRT), to test if each subgroup's treatment effect is the same with the overall treatment effect. MiVT will serve as a useful guideline in microbiome-based personalized medicine to select the therapy that is most suited to the patient's microbiome or to tune the patient's microbiome to be suited to the treatment.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37831574</pmid><doi>10.1109/TCBB.2023.3324139</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6893-7164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2023-11, Vol.20 (6), p.3800-3808 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_pubmed_primary_37831574 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Cancer cancer immunotherapy Digital twins Human microbiome Humans Machine Learning Mice Microbiomes Microbiota - genetics Microorganisms Patients personalized medicine Phylogeny Precision Medicine Regression analysis Sequential analysis subgroup identification Subgroups virtual twins |
title | Subgroup Identification Using Virtual Twins for Human Microbiome Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgroup%20Identification%20Using%20Virtual%20Twins%20for%20Human%20Microbiome%20Studies&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Koh,%20Hyunwook&rft.date=2023-11&rft.volume=20&rft.issue=6&rft.spage=3800&rft.epage=3808&rft.pages=3800-3808&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3324139&rft_dat=%3Cproquest_pubme%3E2877377927%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-1c283c6646c99ce6685b622df73e714bca97e27cc7385105fd8d11a26566a233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906593028&rft_id=info:pmid/37831574&rft_ieee_id=10285385&rfr_iscdi=true |