Loading…

Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining

Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2024-04, Vol.46 (4), p.2252-2266
Main Authors: Bi, Xia-an, Huang, YangJun, Yang, Zicheng, Chen, Ke, Xing, Zhaoxu, Xu, Luyun, Li, Xiang, Liu, Zhengliang, Liu, Tianming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793
container_end_page 2266
container_issue 4
container_start_page 2252
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Bi, Xia-an
Huang, YangJun
Yang, Zicheng
Chen, Ke
Xing, Zhaoxu
Xu, Luyun
Li, Xiang
Liu, Zhengliang
Liu, Tianming
description Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.
doi_str_mv 10.1109/TPAMI.2023.3330795
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37930908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10310125</ieee_id><sourcerecordid>2886937231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</originalsourceid><addsrcrecordid>eNpdkUFPGzEQha0KVALtH6hQtVIvvWw69qw39jFCFCIRQGrUq-V1ZpHpZjfYXhD_voakqOI0mtE3T_PmMfaFw5Rz0D9Wt_PlYipA4BQRYablBzbhGnWJEvUBmwCvRamUUEfsOMZ7AF5JwI_sCGcaQYOasOZXCqNLY6Biabdb398VF9RTsMk_UjFfP1KINnjbFdeUnobwp2iHUCzHLvnyt6enYtHnwSbjQ_-mcGtTopB73-f2EztsbRfp876esNXP89XZZXl1c7E4m1-VDgFT2VbKETkh0VYNqbZycsYrR8q2dasVkNAWeVNLbh1vZGVrUMIJJ0m6dfZzwr7vZLdheBgpJrPx0VHX2Z6GMRqhVK1xJpBn9Ns79H4YQ5-PM0KjAtC6kpkSO8qFIcZArdkGv7Hh2XAwLwGY1wDMSwBmH0Be-rqXHpsNrd9W_n08A6c7wBPRf4rIgWfvfwE5nIr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938009945</pqid></control><display><type>article</type><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><source>IEEE Xplore (Online service)</source><creator>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</creator><creatorcontrib>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</creatorcontrib><description>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3330795</identifier><identifier>PMID: 37930908</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Data mining ; Data models ; Deep learning ; generative adversarial network ; Generative adversarial networks ; graph convolution ; Learning ; Mapping ; Medical imaging ; Multi-view learning ; Pattern analysis ; Predictive models ; structural information mapping ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2252-2266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</cites><orcidid>0000-0002-9851-6376 ; 0009-0007-6746-4431 ; 0000-0003-3692-1111 ; 0000-0001-7061-6714 ; 0009-0001-7208-6021 ; 0000-0002-8132-9048 ; 0000-0002-2715-3360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10310125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37930908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Xia-an</creatorcontrib><creatorcontrib>Huang, YangJun</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Xing, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Luyun</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Liu, Zhengliang</creatorcontrib><creatorcontrib>Liu, Tianming</creatorcontrib><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</description><subject>Alzheimer's disease</subject><subject>Data mining</subject><subject>Data models</subject><subject>Deep learning</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>graph convolution</subject><subject>Learning</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Multi-view learning</subject><subject>Pattern analysis</subject><subject>Predictive models</subject><subject>structural information mapping</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUFPGzEQha0KVALtH6hQtVIvvWw69qw39jFCFCIRQGrUq-V1ZpHpZjfYXhD_voakqOI0mtE3T_PmMfaFw5Rz0D9Wt_PlYipA4BQRYablBzbhGnWJEvUBmwCvRamUUEfsOMZ7AF5JwI_sCGcaQYOasOZXCqNLY6Biabdb398VF9RTsMk_UjFfP1KINnjbFdeUnobwp2iHUCzHLvnyt6enYtHnwSbjQ_-mcGtTopB73-f2EztsbRfp876esNXP89XZZXl1c7E4m1-VDgFT2VbKETkh0VYNqbZycsYrR8q2dasVkNAWeVNLbh1vZGVrUMIJJ0m6dfZzwr7vZLdheBgpJrPx0VHX2Z6GMRqhVK1xJpBn9Ns79H4YQ5-PM0KjAtC6kpkSO8qFIcZArdkGv7Hh2XAwLwGY1wDMSwBmH0Be-rqXHpsNrd9W_n08A6c7wBPRf4rIgWfvfwE5nIr2</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bi, Xia-an</creator><creator>Huang, YangJun</creator><creator>Yang, Zicheng</creator><creator>Chen, Ke</creator><creator>Xing, Zhaoxu</creator><creator>Xu, Luyun</creator><creator>Li, Xiang</creator><creator>Liu, Zhengliang</creator><creator>Liu, Tianming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9851-6376</orcidid><orcidid>https://orcid.org/0009-0007-6746-4431</orcidid><orcidid>https://orcid.org/0000-0003-3692-1111</orcidid><orcidid>https://orcid.org/0000-0001-7061-6714</orcidid><orcidid>https://orcid.org/0009-0001-7208-6021</orcidid><orcidid>https://orcid.org/0000-0002-8132-9048</orcidid><orcidid>https://orcid.org/0000-0002-2715-3360</orcidid></search><sort><creationdate>20240401</creationdate><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><author>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Data mining</topic><topic>Data models</topic><topic>Deep learning</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>graph convolution</topic><topic>Learning</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Multi-view learning</topic><topic>Pattern analysis</topic><topic>Predictive models</topic><topic>structural information mapping</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xia-an</creatorcontrib><creatorcontrib>Huang, YangJun</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Xing, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Luyun</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Liu, Zhengliang</creatorcontrib><creatorcontrib>Liu, Tianming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Xia-an</au><au>Huang, YangJun</au><au>Yang, Zicheng</au><au>Chen, Ke</au><au>Xing, Zhaoxu</au><au>Xu, Luyun</au><au>Li, Xiang</au><au>Liu, Zhengliang</au><au>Liu, Tianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>2252</spage><epage>2266</epage><pages>2252-2266</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37930908</pmid><doi>10.1109/TPAMI.2023.3330795</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9851-6376</orcidid><orcidid>https://orcid.org/0009-0007-6746-4431</orcidid><orcidid>https://orcid.org/0000-0003-3692-1111</orcidid><orcidid>https://orcid.org/0000-0001-7061-6714</orcidid><orcidid>https://orcid.org/0009-0001-7208-6021</orcidid><orcidid>https://orcid.org/0000-0002-8132-9048</orcidid><orcidid>https://orcid.org/0000-0002-2715-3360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2252-2266
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_37930908
source IEEE Xplore (Online service)
subjects Alzheimer's disease
Data mining
Data models
Deep learning
generative adversarial network
Generative adversarial networks
graph convolution
Learning
Mapping
Medical imaging
Multi-view learning
Pattern analysis
Predictive models
structural information mapping
Task analysis
Training
title Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Mapping%20Generative%20Adversarial%20Network%20for%20Multi-View%20Information%20Mapping%20Pattern%20Mining&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Bi,%20Xia-an&rft.date=2024-04-01&rft.volume=46&rft.issue=4&rft.spage=2252&rft.epage=2266&rft.pages=2252-2266&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3330795&rft_dat=%3Cproquest_pubme%3E2886937231%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938009945&rft_id=info:pmid/37930908&rft_ieee_id=10310125&rfr_iscdi=true