Loading…
Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining
Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between the...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2024-04, Vol.46 (4), p.2252-2266 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793 |
container_end_page | 2266 |
container_issue | 4 |
container_start_page | 2252 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Bi, Xia-an Huang, YangJun Yang, Zicheng Chen, Ke Xing, Zhaoxu Xu, Luyun Li, Xiang Liu, Zhengliang Liu, Tianming |
description | Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks. |
doi_str_mv | 10.1109/TPAMI.2023.3330795 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37930908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10310125</ieee_id><sourcerecordid>2886937231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</originalsourceid><addsrcrecordid>eNpdkUFPGzEQha0KVALtH6hQtVIvvWw69qw39jFCFCIRQGrUq-V1ZpHpZjfYXhD_voakqOI0mtE3T_PmMfaFw5Rz0D9Wt_PlYipA4BQRYablBzbhGnWJEvUBmwCvRamUUEfsOMZ7AF5JwI_sCGcaQYOasOZXCqNLY6Biabdb398VF9RTsMk_UjFfP1KINnjbFdeUnobwp2iHUCzHLvnyt6enYtHnwSbjQ_-mcGtTopB73-f2EztsbRfp876esNXP89XZZXl1c7E4m1-VDgFT2VbKETkh0VYNqbZycsYrR8q2dasVkNAWeVNLbh1vZGVrUMIJJ0m6dfZzwr7vZLdheBgpJrPx0VHX2Z6GMRqhVK1xJpBn9Ns79H4YQ5-PM0KjAtC6kpkSO8qFIcZArdkGv7Hh2XAwLwGY1wDMSwBmH0Be-rqXHpsNrd9W_n08A6c7wBPRf4rIgWfvfwE5nIr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938009945</pqid></control><display><type>article</type><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><source>IEEE Xplore (Online service)</source><creator>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</creator><creatorcontrib>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</creatorcontrib><description>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2023.3330795</identifier><identifier>PMID: 37930908</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Data mining ; Data models ; Deep learning ; generative adversarial network ; Generative adversarial networks ; graph convolution ; Learning ; Mapping ; Medical imaging ; Multi-view learning ; Pattern analysis ; Predictive models ; structural information mapping ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2252-2266</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</cites><orcidid>0000-0002-9851-6376 ; 0009-0007-6746-4431 ; 0000-0003-3692-1111 ; 0000-0001-7061-6714 ; 0009-0001-7208-6021 ; 0000-0002-8132-9048 ; 0000-0002-2715-3360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10310125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37930908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Xia-an</creatorcontrib><creatorcontrib>Huang, YangJun</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Xing, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Luyun</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Liu, Zhengliang</creatorcontrib><creatorcontrib>Liu, Tianming</creatorcontrib><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</description><subject>Alzheimer's disease</subject><subject>Data mining</subject><subject>Data models</subject><subject>Deep learning</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>graph convolution</subject><subject>Learning</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Multi-view learning</subject><subject>Pattern analysis</subject><subject>Predictive models</subject><subject>structural information mapping</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUFPGzEQha0KVALtH6hQtVIvvWw69qw39jFCFCIRQGrUq-V1ZpHpZjfYXhD_voakqOI0mtE3T_PmMfaFw5Rz0D9Wt_PlYipA4BQRYablBzbhGnWJEvUBmwCvRamUUEfsOMZ7AF5JwI_sCGcaQYOasOZXCqNLY6Biabdb398VF9RTsMk_UjFfP1KINnjbFdeUnobwp2iHUCzHLvnyt6enYtHnwSbjQ_-mcGtTopB73-f2EztsbRfp876esNXP89XZZXl1c7E4m1-VDgFT2VbKETkh0VYNqbZycsYrR8q2dasVkNAWeVNLbh1vZGVrUMIJJ0m6dfZzwr7vZLdheBgpJrPx0VHX2Z6GMRqhVK1xJpBn9Ns79H4YQ5-PM0KjAtC6kpkSO8qFIcZArdkGv7Hh2XAwLwGY1wDMSwBmH0Be-rqXHpsNrd9W_n08A6c7wBPRf4rIgWfvfwE5nIr2</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bi, Xia-an</creator><creator>Huang, YangJun</creator><creator>Yang, Zicheng</creator><creator>Chen, Ke</creator><creator>Xing, Zhaoxu</creator><creator>Xu, Luyun</creator><creator>Li, Xiang</creator><creator>Liu, Zhengliang</creator><creator>Liu, Tianming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9851-6376</orcidid><orcidid>https://orcid.org/0009-0007-6746-4431</orcidid><orcidid>https://orcid.org/0000-0003-3692-1111</orcidid><orcidid>https://orcid.org/0000-0001-7061-6714</orcidid><orcidid>https://orcid.org/0009-0001-7208-6021</orcidid><orcidid>https://orcid.org/0000-0002-8132-9048</orcidid><orcidid>https://orcid.org/0000-0002-2715-3360</orcidid></search><sort><creationdate>20240401</creationdate><title>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</title><author>Bi, Xia-an ; Huang, YangJun ; Yang, Zicheng ; Chen, Ke ; Xing, Zhaoxu ; Xu, Luyun ; Li, Xiang ; Liu, Zhengliang ; Liu, Tianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Data mining</topic><topic>Data models</topic><topic>Deep learning</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>graph convolution</topic><topic>Learning</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Multi-view learning</topic><topic>Pattern analysis</topic><topic>Predictive models</topic><topic>structural information mapping</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xia-an</creatorcontrib><creatorcontrib>Huang, YangJun</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Xing, Zhaoxu</creatorcontrib><creatorcontrib>Xu, Luyun</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Liu, Zhengliang</creatorcontrib><creatorcontrib>Liu, Tianming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Xia-an</au><au>Huang, YangJun</au><au>Yang, Zicheng</au><au>Chen, Ke</au><au>Xing, Zhaoxu</au><au>Xu, Luyun</au><au>Li, Xiang</au><au>Liu, Zhengliang</au><au>Liu, Tianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>2252</spage><epage>2266</epage><pages>2252-2266</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Multi-view learning is dedicated to integrating information from different views and improving the generalization performance of models. However, in most current works, learning under different views has significant independency, overlooking common information mapping patterns that exist between these views. This paper proposes a Structure Mapping Generative adversarial network (SM-GAN) framework, which utilizes the consistency and complementarity of multi-view data from the innovative perspective of information mapping. Specifically, based on network-structured multi-view data, a structural information mapping model is proposed to capture hierarchical interaction patterns among views. Subsequently, three different types of graph convolutional operations are designed in SM-GAN based on the model. Compared with regular GAN, we add a structural information mapping module between the encoder and decoder wthin the generator, completing the structural information mapping from the micro-view to the macro-view. This paper conducted sufficient validation experiments using public imaging genetics data in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. It is shown that SM-GAN outperforms baseline and advanced methods in multi-label classification and evolution prediction tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37930908</pmid><doi>10.1109/TPAMI.2023.3330795</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9851-6376</orcidid><orcidid>https://orcid.org/0009-0007-6746-4431</orcidid><orcidid>https://orcid.org/0000-0003-3692-1111</orcidid><orcidid>https://orcid.org/0000-0001-7061-6714</orcidid><orcidid>https://orcid.org/0009-0001-7208-6021</orcidid><orcidid>https://orcid.org/0000-0002-8132-9048</orcidid><orcidid>https://orcid.org/0000-0002-2715-3360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.46 (4), p.2252-2266 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_37930908 |
source | IEEE Xplore (Online service) |
subjects | Alzheimer's disease Data mining Data models Deep learning generative adversarial network Generative adversarial networks graph convolution Learning Mapping Medical imaging Multi-view learning Pattern analysis Predictive models structural information mapping Task analysis Training |
title | Structure Mapping Generative Adversarial Network for Multi-View Information Mapping Pattern Mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Mapping%20Generative%20Adversarial%20Network%20for%20Multi-View%20Information%20Mapping%20Pattern%20Mining&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Bi,%20Xia-an&rft.date=2024-04-01&rft.volume=46&rft.issue=4&rft.spage=2252&rft.epage=2266&rft.pages=2252-2266&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2023.3330795&rft_dat=%3Cproquest_pubme%3E2886937231%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f48ceec253a4be8f4c5714ce8af6f980e29a31b651ac1b54a6082c2c5e5cd793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938009945&rft_id=info:pmid/37930908&rft_ieee_id=10310125&rfr_iscdi=true |