Loading…
Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics
Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising po...
Saved in:
Published in: | Materials horizons 2024-02, Vol.11 (3), p.726-736 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233 |
container_end_page | 736 |
container_issue | 3 |
container_start_page | 726 |
container_title | Materials horizons |
container_volume | 11 |
creator | Yue, Dong Zhang, Wenchao Wang, Puzhen Zhang, Yong Teng, Yu Yin, Jinghua Feng, Yu |
description | Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm
−3
at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors.
The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature. |
doi_str_mv | 10.1039/d3mh00907f |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38014471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894724381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoKqsX70rAiwjVyUdNc5T1E1b0oOeSptPdyrZZkxTcf2_W1RU8zcD78M7AQ8gRgwsGQl_WopsBaFDNFtnnkLPsSuT59maXao8chvAOAEzIHArYJXuiACalYvvkc-z6EP1gY9tPqQnLrsPoW0un3tQt9pGu08FjoNFR7Gemt0jjDNOOfrpMgPNminSBvnG--45dQ19uH7PKBKypdd3ChTYiTY1ztKv-cEB2GjMPePgzR-Tt7vZ1_JBNnu8fx9eTzAolYlax-kpqbjRIxrlklTaFUAzz3FRVpYzUUKMUYFMAhTamAVHxhjcCjFJciBE5W_cuvPsYMMSya4PF-dz06IZQ8kJLxaUoWEJP_6HvbvB9-q7kOh0HKHKZqPM1Zb0LwWNTLnzbGb8sGZQrJeWNeHr4VnKX4JOfyqHqsN6gvwIScLwGfLCb9M-p-AIEc5FD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922400854</pqid></control><display><type>article</type><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</creator><creatorcontrib>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</creatorcontrib><description>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm
−3
at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors.
The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh00907f</identifier><identifier>PMID: 38014471</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Barrier layers ; Boron nitride ; Carrier injection ; Design optimization ; Dielectrics ; Electric fields ; Energy storage ; High temperature ; Polyetherimides ; Polymers ; Room temperature ; Skewed distributions ; Storage capacity</subject><ispartof>Materials horizons, 2024-02, Vol.11 (3), p.726-736</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</citedby><cites>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</cites><orcidid>0000-0003-1444-7279 ; 0000-0002-8207-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38014471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Wang, Puzhen</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Teng, Yu</creatorcontrib><creatorcontrib>Yin, Jinghua</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><title>Materials horizons</title><addtitle>Mater Horiz</addtitle><description>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm
−3
at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors.
The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</description><subject>Barrier layers</subject><subject>Boron nitride</subject><subject>Carrier injection</subject><subject>Design optimization</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Polyetherimides</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Skewed distributions</subject><subject>Storage capacity</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMoKqsX70rAiwjVyUdNc5T1E1b0oOeSptPdyrZZkxTcf2_W1RU8zcD78M7AQ8gRgwsGQl_WopsBaFDNFtnnkLPsSuT59maXao8chvAOAEzIHArYJXuiACalYvvkc-z6EP1gY9tPqQnLrsPoW0un3tQt9pGu08FjoNFR7Gemt0jjDNOOfrpMgPNminSBvnG--45dQ19uH7PKBKypdd3ChTYiTY1ztKv-cEB2GjMPePgzR-Tt7vZ1_JBNnu8fx9eTzAolYlax-kpqbjRIxrlklTaFUAzz3FRVpYzUUKMUYFMAhTamAVHxhjcCjFJciBE5W_cuvPsYMMSya4PF-dz06IZQ8kJLxaUoWEJP_6HvbvB9-q7kOh0HKHKZqPM1Zb0LwWNTLnzbGb8sGZQrJeWNeHr4VnKX4JOfyqHqsN6gvwIScLwGfLCb9M-p-AIEc5FD</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Yue, Dong</creator><creator>Zhang, Wenchao</creator><creator>Wang, Puzhen</creator><creator>Zhang, Yong</creator><creator>Teng, Yu</creator><creator>Yin, Jinghua</creator><creator>Feng, Yu</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1444-7279</orcidid><orcidid>https://orcid.org/0000-0002-8207-2862</orcidid></search><sort><creationdate>20240206</creationdate><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><author>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barrier layers</topic><topic>Boron nitride</topic><topic>Carrier injection</topic><topic>Design optimization</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Polyetherimides</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Skewed distributions</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Wang, Puzhen</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Teng, Yu</creatorcontrib><creatorcontrib>Yin, Jinghua</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Dong</au><au>Zhang, Wenchao</au><au>Wang, Puzhen</au><au>Zhang, Yong</au><au>Teng, Yu</au><au>Yin, Jinghua</au><au>Feng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</atitle><jtitle>Materials horizons</jtitle><addtitle>Mater Horiz</addtitle><date>2024-02-06</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>726</spage><epage>736</epage><pages>726-736</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm
−3
at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors.
The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38014471</pmid><doi>10.1039/d3mh00907f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1444-7279</orcidid><orcidid>https://orcid.org/0000-0002-8207-2862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2024-02, Vol.11 (3), p.726-736 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_pubmed_primary_38014471 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Barrier layers Boron nitride Carrier injection Design optimization Dielectrics Electric fields Energy storage High temperature Polyetherimides Polymers Room temperature Skewed distributions Storage capacity |
title | Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20asymmetric%20gradient%20structures%20to%20enhance%20the%20energy%20storage%20performance%20of%20PEI-based%20composite%20dielectrics&rft.jtitle=Materials%20horizons&rft.au=Yue,%20Dong&rft.date=2024-02-06&rft.volume=11&rft.issue=3&rft.spage=726&rft.epage=736&rft.pages=726-736&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh00907f&rft_dat=%3Cproquest_pubme%3E2894724381%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922400854&rft_id=info:pmid/38014471&rfr_iscdi=true |