Loading…

Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics

Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising po...

Full description

Saved in:
Bibliographic Details
Published in:Materials horizons 2024-02, Vol.11 (3), p.726-736
Main Authors: Yue, Dong, Zhang, Wenchao, Wang, Puzhen, Zhang, Yong, Teng, Yu, Yin, Jinghua, Feng, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233
cites cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233
container_end_page 736
container_issue 3
container_start_page 726
container_title Materials horizons
container_volume 11
creator Yue, Dong
Zhang, Wenchao
Wang, Puzhen
Zhang, Yong
Teng, Yu
Yin, Jinghua
Feng, Yu
description Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm −3 at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors. The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.
doi_str_mv 10.1039/d3mh00907f
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38014471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894724381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoKqsX70rAiwjVyUdNc5T1E1b0oOeSptPdyrZZkxTcf2_W1RU8zcD78M7AQ8gRgwsGQl_WopsBaFDNFtnnkLPsSuT59maXao8chvAOAEzIHArYJXuiACalYvvkc-z6EP1gY9tPqQnLrsPoW0un3tQt9pGu08FjoNFR7Gemt0jjDNOOfrpMgPNminSBvnG--45dQ19uH7PKBKypdd3ChTYiTY1ztKv-cEB2GjMPePgzR-Tt7vZ1_JBNnu8fx9eTzAolYlax-kpqbjRIxrlklTaFUAzz3FRVpYzUUKMUYFMAhTamAVHxhjcCjFJciBE5W_cuvPsYMMSya4PF-dz06IZQ8kJLxaUoWEJP_6HvbvB9-q7kOh0HKHKZqPM1Zb0LwWNTLnzbGb8sGZQrJeWNeHr4VnKX4JOfyqHqsN6gvwIScLwGfLCb9M-p-AIEc5FD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922400854</pqid></control><display><type>article</type><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</creator><creatorcontrib>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</creatorcontrib><description>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm −3 at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors. The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh00907f</identifier><identifier>PMID: 38014471</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Barrier layers ; Boron nitride ; Carrier injection ; Design optimization ; Dielectrics ; Electric fields ; Energy storage ; High temperature ; Polyetherimides ; Polymers ; Room temperature ; Skewed distributions ; Storage capacity</subject><ispartof>Materials horizons, 2024-02, Vol.11 (3), p.726-736</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</citedby><cites>FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</cites><orcidid>0000-0003-1444-7279 ; 0000-0002-8207-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38014471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Wang, Puzhen</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Teng, Yu</creatorcontrib><creatorcontrib>Yin, Jinghua</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><title>Materials horizons</title><addtitle>Mater Horiz</addtitle><description>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm −3 at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors. The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</description><subject>Barrier layers</subject><subject>Boron nitride</subject><subject>Carrier injection</subject><subject>Design optimization</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Polyetherimides</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Skewed distributions</subject><subject>Storage capacity</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMoKqsX70rAiwjVyUdNc5T1E1b0oOeSptPdyrZZkxTcf2_W1RU8zcD78M7AQ8gRgwsGQl_WopsBaFDNFtnnkLPsSuT59maXao8chvAOAEzIHArYJXuiACalYvvkc-z6EP1gY9tPqQnLrsPoW0un3tQt9pGu08FjoNFR7Gemt0jjDNOOfrpMgPNminSBvnG--45dQ19uH7PKBKypdd3ChTYiTY1ztKv-cEB2GjMPePgzR-Tt7vZ1_JBNnu8fx9eTzAolYlax-kpqbjRIxrlklTaFUAzz3FRVpYzUUKMUYFMAhTamAVHxhjcCjFJciBE5W_cuvPsYMMSya4PF-dz06IZQ8kJLxaUoWEJP_6HvbvB9-q7kOh0HKHKZqPM1Zb0LwWNTLnzbGb8sGZQrJeWNeHr4VnKX4JOfyqHqsN6gvwIScLwGfLCb9M-p-AIEc5FD</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Yue, Dong</creator><creator>Zhang, Wenchao</creator><creator>Wang, Puzhen</creator><creator>Zhang, Yong</creator><creator>Teng, Yu</creator><creator>Yin, Jinghua</creator><creator>Feng, Yu</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1444-7279</orcidid><orcidid>https://orcid.org/0000-0002-8207-2862</orcidid></search><sort><creationdate>20240206</creationdate><title>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</title><author>Yue, Dong ; Zhang, Wenchao ; Wang, Puzhen ; Zhang, Yong ; Teng, Yu ; Yin, Jinghua ; Feng, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barrier layers</topic><topic>Boron nitride</topic><topic>Carrier injection</topic><topic>Design optimization</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Polyetherimides</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Skewed distributions</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Dong</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Wang, Puzhen</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Teng, Yu</creatorcontrib><creatorcontrib>Yin, Jinghua</creatorcontrib><creatorcontrib>Feng, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Dong</au><au>Zhang, Wenchao</au><au>Wang, Puzhen</au><au>Zhang, Yong</au><au>Teng, Yu</au><au>Yin, Jinghua</au><au>Feng, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics</atitle><jtitle>Materials horizons</jtitle><addtitle>Mater Horiz</addtitle><date>2024-02-06</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>726</spage><epage>736</epage><pages>726-736</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Enhancing the high electric field resistance and energy storage capacity of polymer dielectrics has been a long-standing challenge for the iterations of power equipment. Synergistic inhibition of carrier injection and transport is vital to energy storage performance improvement. Herein, promising polymer polyetherimide (PEI) was employed as a matrix and wider bandgap boron nitride nanosheets (BNNSs) were used as a reinforcing filler. Utilizing high-throughput stochastic breakdown simulations with the distribution characteristics of BNNSs as parameters, a series of topological gradient structures with the potential to enhance performance were obtained, thereby shortening the experimental cycle. Changing the BNNS distribution of symmetric/asymmetric and positive/inverse gradients, as well as the total and gradient contents of BNNSs, means that the position and condition of the surface barrier layer and central hinder layer change, which influences the energy storage performance of the polymer at room temperature and high temperature. Remarkably, the asymmetric gradient structure composite dielectrics exhibited excellent performances. Among them, the PEI-based composite dielectric with 2 vol% BNNS asymmetric inverse gradient distribution (gradient content of 1 vol%) achieved energy densities of 8.26 and 4.78 J cm −3 at room temperature and 150 °C, respectively. The asymmetric gradient structure design strategy holds great promise for optimizing the energy storage capacity of polymer dielectric capacitors. The asymmetric gradient design of the polymer-based composite dielectric can inhibit carrier injection and transport simultaneously, which significantly improves the energy density at room temperature and high temperature.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38014471</pmid><doi>10.1039/d3mh00907f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1444-7279</orcidid><orcidid>https://orcid.org/0000-0002-8207-2862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2024-02, Vol.11 (3), p.726-736
issn 2051-6347
2051-6355
language eng
recordid cdi_pubmed_primary_38014471
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Barrier layers
Boron nitride
Carrier injection
Design optimization
Dielectrics
Electric fields
Energy storage
High temperature
Polyetherimides
Polymers
Room temperature
Skewed distributions
Storage capacity
title Constructing asymmetric gradient structures to enhance the energy storage performance of PEI-based composite dielectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20asymmetric%20gradient%20structures%20to%20enhance%20the%20energy%20storage%20performance%20of%20PEI-based%20composite%20dielectrics&rft.jtitle=Materials%20horizons&rft.au=Yue,%20Dong&rft.date=2024-02-06&rft.volume=11&rft.issue=3&rft.spage=726&rft.epage=736&rft.pages=726-736&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh00907f&rft_dat=%3Cproquest_pubme%3E2894724381%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-b1d6492a90412241b9a8371e55abbb7a490de430cb9a089aaf03b2f2f30a77233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2922400854&rft_id=info:pmid/38014471&rfr_iscdi=true