Loading…

An improved source of spin-polarized electrons based on spin exchange in optically pumped rubidium vapor

We have improved a polarized electron source in which unpolarized electrons undergo collisions with a mixture of buffer gas molecules and optically spin-polarized Rb atoms. With a nitrogen buffer gas, the source reliably provides spin polarization between 15% and 25% with beam currents >4 μA. Vac...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2023-08, Vol.94 (8)
Main Authors: Ahrendsen, K. J., Trantham, K. W., Tupa, D., Gay, T. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have improved a polarized electron source in which unpolarized electrons undergo collisions with a mixture of buffer gas molecules and optically spin-polarized Rb atoms. With a nitrogen buffer gas, the source reliably provides spin polarization between 15% and 25% with beam currents >4 μA. Vacuum pump upgrades mitigate problems caused by denatured diffusion pump oil, leading to longer run times. A new differential pumping scheme allows the use of higher buffer gas pressures up to 800 mTorr. With a new optics layout, the Rb polarization is continuously monitored by a probe laser and improved pump laser power provides more constant high polarization. We have implemented an einzel lens to better control the energy of the electrons delivered to the target chamber and to preferentially select electron populations of higher polarization. The source is designed for studies of biologically relevant chiral molecule samples, which can poison photoemission-based GaAs polarized electron sources at very low partial pressures. It operates adjacent to a target chamber that rises to pressures as high as 10−4 Torr and has been implemented in a first experiment with chiral cysteine targets.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0149691