Loading…
Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning
Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to con...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 2023 |
creator | Ji, Guanglin Gao, Qian Sun, Minyi Mi, Guanyu Hu, Xinyao Sun, Zhenglong |
description | Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery. |
doi_str_mv | 10.1109/EMBC40787.2023.10340943 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmed_primary_38082952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10340943</ieee_id><sourcerecordid>2902936841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533</originalsourceid><addsrcrecordid>eNo9kMtOwzAURA0SolXpHyDwkk2K7Wsn9hJCeUipEKJdR058U1nKiyRe8PdUtLAaaeZoFoeQW85WnDNzv948ppIlOlkJJmDFGUhmJJyRpUmMBsVASJnwczIXsZERi5mckeU4-oIpUFIZAZdkBpppYZSYk-wzDHtf2pqmXTv5NoSGbmzr-1DbqRt-26Gr6W707Z5uQj15u8d2olu0DX1C7OkHzdAO7WG_IheVrUdcnnJBds_rbfoaZe8vb-lDFnkRsykqi8KKBGSlnS0EAq945VicIDgH6CSWUPAKtdImtqqQSgpMYuuU4uCEAliQu-NvP3RfAccpb_xYYl3bFrsw5sIwYSDWkh_QmxMaigZd3g--scN3_mfgAFwfAY-I__OfV_gBBytpzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902936841</pqid></control><display><type>conference_proceeding</type><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><source>IEEE Xplore All Conference Series</source><creator>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</creator><creatorcontrib>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</creatorcontrib><description>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</description><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9798350324471</identifier><identifier>DOI: 10.1109/EMBC40787.2023.10340943</identifier><identifier>PMID: 38082952</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2-DOF ; Biology ; Equipment Design ; Manipulators ; Minimally Invasive Surgical Procedures ; Neurosurgical Procedures ; Planning ; Q-learning ; Robotic Surgical Procedures ; Surgical Instruments ; Target tracking ; Training</subject><ispartof>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10340943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10340943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38082952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Guanglin</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Sun, Minyi</creatorcontrib><creatorcontrib>Mi, Guanyu</creatorcontrib><creatorcontrib>Hu, Xinyao</creatorcontrib><creatorcontrib>Sun, Zhenglong</creatorcontrib><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><title>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><description>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</description><subject>2-DOF</subject><subject>Biology</subject><subject>Equipment Design</subject><subject>Manipulators</subject><subject>Minimally Invasive Surgical Procedures</subject><subject>Neurosurgical Procedures</subject><subject>Planning</subject><subject>Q-learning</subject><subject>Robotic Surgical Procedures</subject><subject>Surgical Instruments</subject><subject>Target tracking</subject><subject>Training</subject><issn>2694-0604</issn><isbn>9798350324471</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtOwzAURA0SolXpHyDwkk2K7Wsn9hJCeUipEKJdR058U1nKiyRe8PdUtLAaaeZoFoeQW85WnDNzv948ppIlOlkJJmDFGUhmJJyRpUmMBsVASJnwczIXsZERi5mckeU4-oIpUFIZAZdkBpppYZSYk-wzDHtf2pqmXTv5NoSGbmzr-1DbqRt-26Gr6W707Z5uQj15u8d2olu0DX1C7OkHzdAO7WG_IheVrUdcnnJBds_rbfoaZe8vb-lDFnkRsykqi8KKBGSlnS0EAq945VicIDgH6CSWUPAKtdImtqqQSgpMYuuU4uCEAliQu-NvP3RfAccpb_xYYl3bFrsw5sIwYSDWkh_QmxMaigZd3g--scN3_mfgAFwfAY-I__OfV_gBBytpzA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ji, Guanglin</creator><creator>Gao, Qian</creator><creator>Sun, Minyi</creator><creator>Mi, Guanyu</creator><creator>Hu, Xinyao</creator><creator>Sun, Zhenglong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><author>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2-DOF</topic><topic>Biology</topic><topic>Equipment Design</topic><topic>Manipulators</topic><topic>Minimally Invasive Surgical Procedures</topic><topic>Neurosurgical Procedures</topic><topic>Planning</topic><topic>Q-learning</topic><topic>Robotic Surgical Procedures</topic><topic>Surgical Instruments</topic><topic>Target tracking</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Guanglin</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Sun, Minyi</creatorcontrib><creatorcontrib>Mi, Guanyu</creatorcontrib><creatorcontrib>Hu, Xinyao</creatorcontrib><creatorcontrib>Sun, Zhenglong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Guanglin</au><au>Gao, Qian</au><au>Sun, Minyi</au><au>Mi, Guanyu</au><au>Hu, Xinyao</au><au>Sun, Zhenglong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</atitle><btitle>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2694-0604</eissn><eisbn>9798350324471</eisbn><abstract>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38082952</pmid><doi>10.1109/EMBC40787.2023.10340943</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2694-0604 |
ispartof | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-5 |
issn | 2694-0604 |
language | eng |
recordid | cdi_pubmed_primary_38082952 |
source | IEEE Xplore All Conference Series |
subjects | 2-DOF Biology Equipment Design Manipulators Minimally Invasive Surgical Procedures Neurosurgical Procedures Planning Q-learning Robotic Surgical Procedures Surgical Instruments Target tracking Training |
title | Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Surgical%20Continuum%20Manipulator%20Control%20Using%20Multiagent%20Team%20Deep%20Q%20Learning&rft.btitle=2023%2045th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20&%20Biology%20Society%20(EMBC)&rft.au=Ji,%20Guanglin&rft.date=2023-01-01&rft.volume=2023&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC40787.2023.10340943&rft.eisbn=9798350324471&rft_dat=%3Cproquest_CHZPO%3E2902936841%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902936841&rft_id=info:pmid/38082952&rft_ieee_id=10340943&rfr_iscdi=true |