Loading…

Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning

Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to con...

Full description

Saved in:
Bibliographic Details
Main Authors: Ji, Guanglin, Gao, Qian, Sun, Minyi, Mi, Guanyu, Hu, Xinyao, Sun, Zhenglong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume 2023
creator Ji, Guanglin
Gao, Qian
Sun, Minyi
Mi, Guanyu
Hu, Xinyao
Sun, Zhenglong
description Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.
doi_str_mv 10.1109/EMBC40787.2023.10340943
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmed_primary_38082952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10340943</ieee_id><sourcerecordid>2902936841</sourcerecordid><originalsourceid>FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533</originalsourceid><addsrcrecordid>eNo9kMtOwzAURA0SolXpHyDwkk2K7Wsn9hJCeUipEKJdR058U1nKiyRe8PdUtLAaaeZoFoeQW85WnDNzv948ppIlOlkJJmDFGUhmJJyRpUmMBsVASJnwczIXsZERi5mckeU4-oIpUFIZAZdkBpppYZSYk-wzDHtf2pqmXTv5NoSGbmzr-1DbqRt-26Gr6W707Z5uQj15u8d2olu0DX1C7OkHzdAO7WG_IheVrUdcnnJBds_rbfoaZe8vb-lDFnkRsykqi8KKBGSlnS0EAq945VicIDgH6CSWUPAKtdImtqqQSgpMYuuU4uCEAliQu-NvP3RfAccpb_xYYl3bFrsw5sIwYSDWkh_QmxMaigZd3g--scN3_mfgAFwfAY-I__OfV_gBBytpzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902936841</pqid></control><display><type>conference_proceeding</type><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><source>IEEE Xplore All Conference Series</source><creator>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</creator><creatorcontrib>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</creatorcontrib><description>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</description><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9798350324471</identifier><identifier>DOI: 10.1109/EMBC40787.2023.10340943</identifier><identifier>PMID: 38082952</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2-DOF ; Biology ; Equipment Design ; Manipulators ; Minimally Invasive Surgical Procedures ; Neurosurgical Procedures ; Planning ; Q-learning ; Robotic Surgical Procedures ; Surgical Instruments ; Target tracking ; Training</subject><ispartof>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC), 2023, Vol.2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10340943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10340943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38082952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Guanglin</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Sun, Minyi</creatorcontrib><creatorcontrib>Mi, Guanyu</creatorcontrib><creatorcontrib>Hu, Xinyao</creatorcontrib><creatorcontrib>Sun, Zhenglong</creatorcontrib><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><title>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><description>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</description><subject>2-DOF</subject><subject>Biology</subject><subject>Equipment Design</subject><subject>Manipulators</subject><subject>Minimally Invasive Surgical Procedures</subject><subject>Neurosurgical Procedures</subject><subject>Planning</subject><subject>Q-learning</subject><subject>Robotic Surgical Procedures</subject><subject>Surgical Instruments</subject><subject>Target tracking</subject><subject>Training</subject><issn>2694-0604</issn><isbn>9798350324471</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtOwzAURA0SolXpHyDwkk2K7Wsn9hJCeUipEKJdR058U1nKiyRe8PdUtLAaaeZoFoeQW85WnDNzv948ppIlOlkJJmDFGUhmJJyRpUmMBsVASJnwczIXsZERi5mckeU4-oIpUFIZAZdkBpppYZSYk-wzDHtf2pqmXTv5NoSGbmzr-1DbqRt-26Gr6W707Z5uQj15u8d2olu0DX1C7OkHzdAO7WG_IheVrUdcnnJBds_rbfoaZe8vb-lDFnkRsykqi8KKBGSlnS0EAq945VicIDgH6CSWUPAKtdImtqqQSgpMYuuU4uCEAliQu-NvP3RfAccpb_xYYl3bFrsw5sIwYSDWkh_QmxMaigZd3g--scN3_mfgAFwfAY-I__OfV_gBBytpzA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ji, Guanglin</creator><creator>Gao, Qian</creator><creator>Sun, Minyi</creator><creator>Mi, Guanyu</creator><creator>Hu, Xinyao</creator><creator>Sun, Zhenglong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</title><author>Ji, Guanglin ; Gao, Qian ; Sun, Minyi ; Mi, Guanyu ; Hu, Xinyao ; Sun, Zhenglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2-DOF</topic><topic>Biology</topic><topic>Equipment Design</topic><topic>Manipulators</topic><topic>Minimally Invasive Surgical Procedures</topic><topic>Neurosurgical Procedures</topic><topic>Planning</topic><topic>Q-learning</topic><topic>Robotic Surgical Procedures</topic><topic>Surgical Instruments</topic><topic>Target tracking</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Guanglin</creatorcontrib><creatorcontrib>Gao, Qian</creatorcontrib><creatorcontrib>Sun, Minyi</creatorcontrib><creatorcontrib>Mi, Guanyu</creatorcontrib><creatorcontrib>Hu, Xinyao</creatorcontrib><creatorcontrib>Sun, Zhenglong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Guanglin</au><au>Gao, Qian</au><au>Sun, Minyi</au><au>Mi, Guanyu</au><au>Hu, Xinyao</au><au>Sun, Zhenglong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning</atitle><btitle>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2694-0604</eissn><eisbn>9798350324471</eisbn><abstract>Continuum manipulator has shown great potential in surgical applications. The flexibility of the continuum manipulator helps it achieve many complicated surgeries, such as neurosurgery, vascular surgery, abdominal surgery, etc. In this paper, we propose a Team Deep Q learning framework (TDQN) to control a 2-DoF surgical continuum manipulator with four cables, where two cables in a pair form one agent. During the learning process, each agent shares state and reward information with the other one, which namely is centralized learning. Using the shared information, TDQN shows better targeting accuracy than multiagent deep Q learning (MADQN) by verifying on a 2-DoF cable-driven surgical continuum manipulator. The root mean square error during tracking with and without disturbance are 0.82mm and 0.16mm respectively using TDQN, whereas 1.52mm and 0.98mm using MADQN respectively.Clinical Relevance-The proposed TDQN shows a promising future in improving control accuracy under disturbance and maneuverability in robotic-assisted endoscopic surgery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38082952</pmid><doi>10.1109/EMBC40787.2023.10340943</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2694-0604
ispartof 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-5
issn 2694-0604
language eng
recordid cdi_pubmed_primary_38082952
source IEEE Xplore All Conference Series
subjects 2-DOF
Biology
Equipment Design
Manipulators
Minimally Invasive Surgical Procedures
Neurosurgical Procedures
Planning
Q-learning
Robotic Surgical Procedures
Surgical Instruments
Target tracking
Training
title Surgical Continuum Manipulator Control Using Multiagent Team Deep Q Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Surgical%20Continuum%20Manipulator%20Control%20Using%20Multiagent%20Team%20Deep%20Q%20Learning&rft.btitle=2023%2045th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20&%20Biology%20Society%20(EMBC)&rft.au=Ji,%20Guanglin&rft.date=2023-01-01&rft.volume=2023&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC40787.2023.10340943&rft.eisbn=9798350324471&rft_dat=%3Cproquest_CHZPO%3E2902936841%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i260t-cbba2734f8dab2e31f1fd067e3dd3ed4ec3b1fe85896a5b4542e76ad5513d2533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902936841&rft_id=info:pmid/38082952&rft_ieee_id=10340943&rfr_iscdi=true