Loading…
Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 2023 |
creator | Feng, Yixue Chandio, Bramsh Q. Thomopoulos, Sophia I. Chattopadhyay, Tamoghna Thompson, Paul M. |
description | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. |
doi_str_mv | 10.1109/EMBC40787.2023.10340009 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38083771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10340009</ieee_id><sourcerecordid>2902933186</sourcerecordid><originalsourceid>FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhquJEYL8A6M9ehl-Xbu1PQIimmA8gF6XbvsGjWPDtovh34sBPL2H58lzeAm5ZzBiDPTj7G0yFSCVHMUQ8xEDLgBAX5ChllrxBHgshGSXpB-nWkSQguiRofc2h4QnItExvyY9rkBxKVmffH0aZ02wbWNqOu5Ci03Rlug8rVpH59igO9BmTZf7Jmww2IKunClCu3Zmt9lHE-OxpJOuKWukK9zuahPQU9tQQxftT_RkgqFLDH-NG3JVmdrj8LQD8vE8W01fosX7_HU6XkSWgw5RVUjBuFFljtpIxCLXEjWwSmqECkEBlKIQDNI8MTwvpeIalFKo0lSyVPEBeTh2d6797tCHbGt9gXVtGmw7n8UaYs05U-lBvTupXb7FMts5uzVun50POgi3R8Ei4j8-385_AYvsdK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902933186</pqid></control><display><type>conference_proceeding</type><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><source>IEEE Xplore All Conference Series</source><creator>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</creator><creatorcontrib>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</creatorcontrib><description>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</description><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9798350324471</identifier><identifier>DOI: 10.1109/EMBC40787.2023.10340009</identifier><identifier>PMID: 38083771</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Benchmarking ; Brain - diagnostic imaging ; Estimation ; Humans ; Image Processing, Computer-Assisted - methods ; Kernel ; Measurement ; Shape ; Sociology ; Training ; White matter ; White Matter - diagnostic imaging</subject><ispartof>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10340009$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27901,27902,54530,54907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38083771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Yixue</creatorcontrib><creatorcontrib>Chandio, Bramsh Q.</creatorcontrib><creatorcontrib>Thomopoulos, Sophia I.</creatorcontrib><creatorcontrib>Chattopadhyay, Tamoghna</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><title>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><description>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</description><subject>Adult</subject><subject>Benchmarking</subject><subject>Brain - diagnostic imaging</subject><subject>Estimation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kernel</subject><subject>Measurement</subject><subject>Shape</subject><subject>Sociology</subject><subject>Training</subject><subject>White matter</subject><subject>White Matter - diagnostic imaging</subject><issn>2694-0604</issn><isbn>9798350324471</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>ESBDL</sourceid><recordid>eNo9kEFPwjAYhquJEYL8A6M9ehl-Xbu1PQIimmA8gF6XbvsGjWPDtovh34sBPL2H58lzeAm5ZzBiDPTj7G0yFSCVHMUQ8xEDLgBAX5ChllrxBHgshGSXpB-nWkSQguiRofc2h4QnItExvyY9rkBxKVmffH0aZ02wbWNqOu5Ci03Rlug8rVpH59igO9BmTZf7Jmww2IKunClCu3Zmt9lHE-OxpJOuKWukK9zuahPQU9tQQxftT_RkgqFLDH-NG3JVmdrj8LQD8vE8W01fosX7_HU6XkSWgw5RVUjBuFFljtpIxCLXEjWwSmqECkEBlKIQDNI8MTwvpeIalFKo0lSyVPEBeTh2d6797tCHbGt9gXVtGmw7n8UaYs05U-lBvTupXb7FMts5uzVun50POgi3R8Ei4j8-385_AYvsdK4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Feng, Yixue</creator><creator>Chandio, Bramsh Q.</creator><creator>Thomopoulos, Sophia I.</creator><creator>Chattopadhyay, Tamoghna</creator><creator>Thompson, Paul M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>ESBDL</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><author>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Benchmarking</topic><topic>Brain - diagnostic imaging</topic><topic>Estimation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kernel</topic><topic>Measurement</topic><topic>Shape</topic><topic>Sociology</topic><topic>Training</topic><topic>White matter</topic><topic>White Matter - diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yixue</creatorcontrib><creatorcontrib>Chandio, Bramsh Q.</creatorcontrib><creatorcontrib>Thomopoulos, Sophia I.</creatorcontrib><creatorcontrib>Chattopadhyay, Tamoghna</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yixue</au><au>Chandio, Bramsh Q.</au><au>Thomopoulos, Sophia I.</au><au>Chattopadhyay, Tamoghna</au><au>Thompson, Paul M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</atitle><btitle>2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2694-0604</eissn><eisbn>9798350324471</eisbn><abstract>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38083771</pmid><doi>10.1109/EMBC40787.2023.10340009</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2694-0604 |
ispartof | 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-6 |
issn | 2694-0604 |
language | eng |
recordid | cdi_pubmed_primary_38083771 |
source | IEEE Xplore All Conference Series |
subjects | Adult Benchmarking Brain - diagnostic imaging Estimation Humans Image Processing, Computer-Assisted - methods Kernel Measurement Shape Sociology Training White matter White Matter - diagnostic imaging |
title | Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variational%20Autoencoders%20for%20Generating%20Synthetic%20Tractography-Based%20Bundle%20Templates%20in%20a%20Low-Data%20Setting&rft.btitle=2023%2045th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20&%20Biology%20Society%20(EMBC)&rft.au=Feng,%20Yixue&rft.date=2023-01-01&rft.volume=2023&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC40787.2023.10340009&rft.eisbn=9798350324471&rft_dat=%3Cproquest_pubme%3E2902933186%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902933186&rft_id=info:pmid/38083771&rft_ieee_id=10340009&rfr_iscdi=true |