Loading…

Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting

White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng, Yixue, Chandio, Bramsh Q., Thomopoulos, Sophia I., Chattopadhyay, Tamoghna, Thompson, Paul M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume 2023
creator Feng, Yixue
Chandio, Bramsh Q.
Thomopoulos, Sophia I.
Chattopadhyay, Tamoghna
Thompson, Paul M.
description White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
doi_str_mv 10.1109/EMBC40787.2023.10340009
format conference_proceeding
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38083771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10340009</ieee_id><sourcerecordid>2902933186</sourcerecordid><originalsourceid>FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhquJEYL8A6M9ehl-Xbu1PQIimmA8gF6XbvsGjWPDtovh34sBPL2H58lzeAm5ZzBiDPTj7G0yFSCVHMUQ8xEDLgBAX5ChllrxBHgshGSXpB-nWkSQguiRofc2h4QnItExvyY9rkBxKVmffH0aZ02wbWNqOu5Ci03Rlug8rVpH59igO9BmTZf7Jmww2IKunClCu3Zmt9lHE-OxpJOuKWukK9zuahPQU9tQQxftT_RkgqFLDH-NG3JVmdrj8LQD8vE8W01fosX7_HU6XkSWgw5RVUjBuFFljtpIxCLXEjWwSmqECkEBlKIQDNI8MTwvpeIalFKo0lSyVPEBeTh2d6797tCHbGt9gXVtGmw7n8UaYs05U-lBvTupXb7FMts5uzVun50POgi3R8Ei4j8-385_AYvsdK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2902933186</pqid></control><display><type>conference_proceeding</type><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><source>IEEE Xplore All Conference Series</source><creator>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</creator><creatorcontrib>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</creatorcontrib><description>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</description><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9798350324471</identifier><identifier>DOI: 10.1109/EMBC40787.2023.10340009</identifier><identifier>PMID: 38083771</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Benchmarking ; Brain - diagnostic imaging ; Estimation ; Humans ; Image Processing, Computer-Assisted - methods ; Kernel ; Measurement ; Shape ; Sociology ; Training ; White matter ; White Matter - diagnostic imaging</subject><ispartof>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC), 2023, Vol.2023, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10340009$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,27901,27902,54530,54907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38083771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Yixue</creatorcontrib><creatorcontrib>Chandio, Bramsh Q.</creatorcontrib><creatorcontrib>Thomopoulos, Sophia I.</creatorcontrib><creatorcontrib>Chattopadhyay, Tamoghna</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><title>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</title><addtitle>EMBC</addtitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><description>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</description><subject>Adult</subject><subject>Benchmarking</subject><subject>Brain - diagnostic imaging</subject><subject>Estimation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Kernel</subject><subject>Measurement</subject><subject>Shape</subject><subject>Sociology</subject><subject>Training</subject><subject>White matter</subject><subject>White Matter - diagnostic imaging</subject><issn>2694-0604</issn><isbn>9798350324471</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>ESBDL</sourceid><recordid>eNo9kEFPwjAYhquJEYL8A6M9ehl-Xbu1PQIimmA8gF6XbvsGjWPDtovh34sBPL2H58lzeAm5ZzBiDPTj7G0yFSCVHMUQ8xEDLgBAX5ChllrxBHgshGSXpB-nWkSQguiRofc2h4QnItExvyY9rkBxKVmffH0aZ02wbWNqOu5Ci03Rlug8rVpH59igO9BmTZf7Jmww2IKunClCu3Zmt9lHE-OxpJOuKWukK9zuahPQU9tQQxftT_RkgqFLDH-NG3JVmdrj8LQD8vE8W01fosX7_HU6XkSWgw5RVUjBuFFljtpIxCLXEjWwSmqECkEBlKIQDNI8MTwvpeIalFKo0lSyVPEBeTh2d6797tCHbGt9gXVtGmw7n8UaYs05U-lBvTupXb7FMts5uzVun50POgi3R8Ei4j8-385_AYvsdK4</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Feng, Yixue</creator><creator>Chandio, Bramsh Q.</creator><creator>Thomopoulos, Sophia I.</creator><creator>Chattopadhyay, Tamoghna</creator><creator>Thompson, Paul M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>ESBDL</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</title><author>Feng, Yixue ; Chandio, Bramsh Q. ; Thomopoulos, Sophia I. ; Chattopadhyay, Tamoghna ; Thompson, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Benchmarking</topic><topic>Brain - diagnostic imaging</topic><topic>Estimation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Kernel</topic><topic>Measurement</topic><topic>Shape</topic><topic>Sociology</topic><topic>Training</topic><topic>White matter</topic><topic>White Matter - diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yixue</creatorcontrib><creatorcontrib>Chandio, Bramsh Q.</creatorcontrib><creatorcontrib>Thomopoulos, Sophia I.</creatorcontrib><creatorcontrib>Chattopadhyay, Tamoghna</creatorcontrib><creatorcontrib>Thompson, Paul M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yixue</au><au>Chandio, Bramsh Q.</au><au>Thomopoulos, Sophia I.</au><au>Chattopadhyay, Tamoghna</au><au>Thompson, Paul M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting</atitle><btitle>2023 45th Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</btitle><stitle>EMBC</stitle><addtitle>Annu Int Conf IEEE Eng Med Biol Soc</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2694-0604</eissn><eisbn>9798350324471</eisbn><abstract>White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38083771</pmid><doi>10.1109/EMBC40787.2023.10340009</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2694-0604
ispartof 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2023, Vol.2023, p.1-6
issn 2694-0604
language eng
recordid cdi_pubmed_primary_38083771
source IEEE Xplore All Conference Series
subjects Adult
Benchmarking
Brain - diagnostic imaging
Estimation
Humans
Image Processing, Computer-Assisted - methods
Kernel
Measurement
Shape
Sociology
Training
White matter
White Matter - diagnostic imaging
title Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variational%20Autoencoders%20for%20Generating%20Synthetic%20Tractography-Based%20Bundle%20Templates%20in%20a%20Low-Data%20Setting&rft.btitle=2023%2045th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20&%20Biology%20Society%20(EMBC)&rft.au=Feng,%20Yixue&rft.date=2023-01-01&rft.volume=2023&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC40787.2023.10340009&rft.eisbn=9798350324471&rft_dat=%3Cproquest_pubme%3E2902933186%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i309t-fc7413a8dbe9a7eecb97e901f79e0fe0800d4c4106b5a3bd78390888e86671683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902933186&rft_id=info:pmid/38083771&rft_ieee_id=10340009&rfr_iscdi=true