Loading…
Faster Gastrointestinal Transit, Reduced Small Intestinal Smooth Muscle Tone and Dysmotility in the Nlgn3 R451C Mouse Model of Autism
Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the gen...
Saved in:
Published in: | International journal of molecular sciences 2024-01, Vol.25 (2) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the
gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (
mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in
mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the
R451C mutation in mice backcrossed onto a C57BL/6 background. We report that
mice show a 30.9% faster gastrointestinal transit (
= 0.0004) in vivo and have 6% longer small intestines (
= 0.04) compared to wild-types due to a reduction in smooth muscle tone. In
mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease,
= 0.02; mid: 9.8%,
= 0.04; distal: 11.5%,
= 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration,
= 0.009; distal: 30.5%,
= 0.004) in the ileum. In
mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABA
antagonist, gabazine, compared to 40.6% in wild-type mice (
= 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT
= 0.0006,
= 0.002), but not the ileum, in both wild-type and
mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein. |
---|---|
ISSN: | 1422-0067 |