Loading…
Effects of H 2 S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts
Hydrogen sulfide (H S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H S-releasing ascorbic acid derivative, BM-164, to combi...
Saved in:
Published in: | European journal of pharmaceutical sciences 2024-04, Vol.195, p.106721 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen sulfide (H
S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H
S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H
S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H
S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 μM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H
S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively. |
---|---|
ISSN: | 1879-0720 |
DOI: | 10.1016/j.ejps.2024.106721 |