Loading…
Synthesis of Novel Nanocomposite Materials with Enhanced Antimicrobial Activity based on Poly(Ethylene Glycol Methacrylate)s with Ag, TiO 2 or ZnO Nanoparticles
The aim of this investigation was to prepare novel hybrid materials with enhanced antimicrobial properties to be used in food preservation and packaging applications. Therefore, nanocomposite materials were synthesized based on two stimuli-responsive oligo(ethylene glycol methacrylate)s, namely PEGM...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-01, Vol.14 (3) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this investigation was to prepare novel hybrid materials with enhanced antimicrobial properties to be used in food preservation and packaging applications. Therefore, nanocomposite materials were synthesized based on two stimuli-responsive oligo(ethylene glycol methacrylate)s, namely PEGMA and PEGMEMA, the first bearing hydroxyl side groups with three different metal nanoparticles, i.e., Ag, TiO
and ZnO. The in situ radical polymerization technique was employed to ensure good dispersion of the nanoparticles in the polymer matrix. FTIR spectra identified the successful preparation of the corresponding polymers and XRD scans revealed the presence of the nanoparticles in the polymer matrix. In the polymer bearing hydroxyl groups, the presence of Ag-NPs led to slightly lower thermal stability as measured by TGA, whereas both ZnO and TiO
led to nanomaterials with better thermal stability. The antimicrobial activity of all materials was determined against the Gram-negative bacteria
and the Gram-positive
,
and
. PEGMEMA nanocomposites had much better antimicrobial activity compared to PEGMA. Ag NPs exhibited the best inhibition of microbial growth in both polymers with all four bacteria. Nanocomposites with TiO
showed a very good inhibition percentage when used in PEGMEMA-based materials, while in PEGMA material, high antimicrobial activity was observed only against
and
, with moderate activity against
and almost absent activity against
. The presence of ZnO showed antimicrobial activity only in the case of PEGMEMA-based materials. Differences observed in the antibacterial activity of the polymers with the different nanoparticles could be attributed to the different structure of the polymers and possibly the more efficient release of the NPs. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano14030291 |