Loading…

MUMA: a multi-omics meta-learning algorithm for data interpretation and classification

Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2024-04, Vol.PP (4), p.1-11
Main Authors: Huang, Hai-Hui, Shu, Jun, Liang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03
cites cdi_FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03
container_end_page 11
container_issue 4
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume PP
creator Huang, Hai-Hui
Shu, Jun
Liang, Yong
description Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved. The source code for MUMA is available at https://github.com/bio-ai-source/MUMA .
doi_str_mv 10.1109/JBHI.2024.3363081
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38345953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10432939</ieee_id><sourcerecordid>2926079159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKrU_QBAJePGyNcnsR-JNxU9avFivIc3O1sh-1GT34L83tVXEuWQyPPMyPIQcczbhnKmLp-uHx4lgIp0A5MAk3yGHgucyEYLJ3Z-eq_SAjEN4Z7FkHKl8nxyAhDRTGRyS19l8dnVJDW2GundJ1zgbaIO9SWo0vnXtkpp62XnXvzW06jwtTW-oa3v0Kx-x3nUtNW1JbW1CcJWz36MjsleZOuB4-47I_O725eYhmT7fP95cTRMLGesThIKDiedzqBBLMLmRjBe2gEWKpsxyiQwFWhC8yC0wlmZpyaSMn9JCyWBEzje5K999DBh63bhgsa5Ni90QtFAiZ4XimYro2T_0vRt8G6_TwKLCaIpnkeIbyvouBI-VXnnXGP-pOdNr73rtXa-96633uHO6TR4WDZa_Gz-WI3CyARwi_glMQShQ8AVrAIVa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619415</pqid></control><display><type>article</type><title>MUMA: a multi-omics meta-learning algorithm for data interpretation and classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Hai-Hui ; Shu, Jun ; Liang, Yong</creator><creatorcontrib>Huang, Hai-Hui ; Shu, Jun ; Liang, Yong</creatorcontrib><description>Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved. The source code for MUMA is available at https://github.com/bio-ai-source/MUMA .</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3363081</identifier><identifier>PMID: 38345953</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive sampling ; Algorithms ; Analytical models ; Bioinformatics ; Biological activity ; Biological analysis ; Biological information theory ; Biological properties ; Biological samples ; Biological system modeling ; Biomarkers ; Cancer ; Classification ; Data analysis ; Data integration ; Data interpretation ; Data models ; Heterogeneity ; Information processing ; Integration analysis ; Learning ; Machine learning ; Markers selection ; Meta-learning ; Metalearning ; Molecular modelling ; Multi-omics ; Proteomics ; Regularization ; Training ; Transcriptomics</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-04, Vol.PP (4), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03</citedby><cites>FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03</cites><orcidid>0000-0001-9968-3048 ; 0000-0002-6546-969X ; 0000-0002-2858-2810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10432939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38345953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hai-Hui</creatorcontrib><creatorcontrib>Shu, Jun</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><title>MUMA: a multi-omics meta-learning algorithm for data interpretation and classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved. The source code for MUMA is available at https://github.com/bio-ai-source/MUMA .</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological analysis</subject><subject>Biological information theory</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Biological system modeling</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Data interpretation</subject><subject>Data models</subject><subject>Heterogeneity</subject><subject>Information processing</subject><subject>Integration analysis</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Markers selection</subject><subject>Meta-learning</subject><subject>Metalearning</subject><subject>Molecular modelling</subject><subject>Multi-omics</subject><subject>Proteomics</subject><subject>Regularization</subject><subject>Training</subject><subject>Transcriptomics</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoKrU_QBAJePGyNcnsR-JNxU9avFivIc3O1sh-1GT34L83tVXEuWQyPPMyPIQcczbhnKmLp-uHx4lgIp0A5MAk3yGHgucyEYLJ3Z-eq_SAjEN4Z7FkHKl8nxyAhDRTGRyS19l8dnVJDW2GundJ1zgbaIO9SWo0vnXtkpp62XnXvzW06jwtTW-oa3v0Kx-x3nUtNW1JbW1CcJWz36MjsleZOuB4-47I_O725eYhmT7fP95cTRMLGesThIKDiedzqBBLMLmRjBe2gEWKpsxyiQwFWhC8yC0wlmZpyaSMn9JCyWBEzje5K999DBh63bhgsa5Ni90QtFAiZ4XimYro2T_0vRt8G6_TwKLCaIpnkeIbyvouBI-VXnnXGP-pOdNr73rtXa-96633uHO6TR4WDZa_Gz-WI3CyARwi_glMQShQ8AVrAIVa</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Huang, Hai-Hui</creator><creator>Shu, Jun</creator><creator>Liang, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9968-3048</orcidid><orcidid>https://orcid.org/0000-0002-6546-969X</orcidid><orcidid>https://orcid.org/0000-0002-2858-2810</orcidid></search><sort><creationdate>20240401</creationdate><title>MUMA: a multi-omics meta-learning algorithm for data interpretation and classification</title><author>Huang, Hai-Hui ; Shu, Jun ; Liang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological analysis</topic><topic>Biological information theory</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Biological system modeling</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Data interpretation</topic><topic>Data models</topic><topic>Heterogeneity</topic><topic>Information processing</topic><topic>Integration analysis</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Markers selection</topic><topic>Meta-learning</topic><topic>Metalearning</topic><topic>Molecular modelling</topic><topic>Multi-omics</topic><topic>Proteomics</topic><topic>Regularization</topic><topic>Training</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hai-Hui</creatorcontrib><creatorcontrib>Shu, Jun</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hai-Hui</au><au>Shu, Jun</au><au>Liang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MUMA: a multi-omics meta-learning algorithm for data interpretation and classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>PP</volume><issue>4</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved. The source code for MUMA is available at https://github.com/bio-ai-source/MUMA .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38345953</pmid><doi>10.1109/JBHI.2024.3363081</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9968-3048</orcidid><orcidid>https://orcid.org/0000-0002-6546-969X</orcidid><orcidid>https://orcid.org/0000-0002-2858-2810</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-04, Vol.PP (4), p.1-11
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_38345953
source IEEE Electronic Library (IEL) Journals
subjects Adaptive sampling
Algorithms
Analytical models
Bioinformatics
Biological activity
Biological analysis
Biological information theory
Biological properties
Biological samples
Biological system modeling
Biomarkers
Cancer
Classification
Data analysis
Data integration
Data interpretation
Data models
Heterogeneity
Information processing
Integration analysis
Learning
Machine learning
Markers selection
Meta-learning
Metalearning
Molecular modelling
Multi-omics
Proteomics
Regularization
Training
Transcriptomics
title MUMA: a multi-omics meta-learning algorithm for data interpretation and classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MUMA:%20a%20multi-omics%20meta-learning%20algorithm%20for%20data%20interpretation%20and%20classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Huang,%20Hai-Hui&rft.date=2024-04-01&rft.volume=PP&rft.issue=4&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3363081&rft_dat=%3Cproquest_pubme%3E2926079159%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-e3713a36313feed3a6a8017c73b4ead568e0e2ec32176c300454d08876cdc3d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033619415&rft_id=info:pmid/38345953&rft_ieee_id=10432939&rfr_iscdi=true