Loading…

All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O

Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths pro...

Full description

Saved in:
Bibliographic Details
Published in:Communications chemistry 2024-02, Vol.7 (1), p.34
Main Authors: Tóbiás, Roland, Diouf, Meissa L, Cozijn, Frank M J, Ubachs, Wim, Császár, Attila G
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 34
container_title Communications chemistry
container_volume 7
creator Tóbiás, Roland
Diouf, Meissa L
Cozijn, Frank M J
Ubachs, Wim
Császár, Attila G
description Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H O and H O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.
doi_str_mv 10.1038/s42004-024-01103-8
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38365971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38365971</sourcerecordid><originalsourceid>FETCH-pubmed_primary_383659713</originalsourceid><addsrcrecordid>eNqFjsFOwzAQRC0kRCvoD3BA8wOBtV0S54gQqLdeuFdu4pKAm7W8jir-nkrAmcNo9EbvMErdarrXZN2DrA3RuiJzjj4vlbtQS2PbtrJ13S7USuSDiAxp2zTuSi2ss_Vj2-il8k8xIvkyCGLwPQpjmPeCcUIZAiSFrmSWjtPYYQrlxPlTwAecfAkZo3DhxJHf5yDYwEDX2MJP_Q84bG_U5cFHCavfvlZ3ry9vz5sqzftj6Hcpj0efv3Z_n-y_wjfUAkXb</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tóbiás, Roland ; Diouf, Meissa L ; Cozijn, Frank M J ; Ubachs, Wim ; Császár, Attila G</creator><creatorcontrib>Tóbiás, Roland ; Diouf, Meissa L ; Cozijn, Frank M J ; Ubachs, Wim ; Császár, Attila G</creatorcontrib><description>Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H O and H O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.</description><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-024-01103-8</identifier><identifier>PMID: 38365971</identifier><language>eng</language><publisher>England</publisher><ispartof>Communications chemistry, 2024-02, Vol.7 (1), p.34</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3674-5066 ; 0000-0002-8169-5961 ; 0000-0001-7840-3756 ; 0000-0003-1262-6003 ; 0000-0001-5640-191X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38365971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Diouf, Meissa L</creatorcontrib><creatorcontrib>Cozijn, Frank M J</creatorcontrib><creatorcontrib>Ubachs, Wim</creatorcontrib><creatorcontrib>Császár, Attila G</creatorcontrib><title>All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><description>Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H O and H O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.</description><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjsFOwzAQRC0kRCvoD3BA8wOBtV0S54gQqLdeuFdu4pKAm7W8jir-nkrAmcNo9EbvMErdarrXZN2DrA3RuiJzjj4vlbtQS2PbtrJ13S7USuSDiAxp2zTuSi2ss_Vj2-il8k8xIvkyCGLwPQpjmPeCcUIZAiSFrmSWjtPYYQrlxPlTwAecfAkZo3DhxJHf5yDYwEDX2MJP_Q84bG_U5cFHCavfvlZ3ry9vz5sqzftj6Hcpj0efv3Z_n-y_wjfUAkXb</recordid><startdate>20240216</startdate><enddate>20240216</enddate><creator>Tóbiás, Roland</creator><creator>Diouf, Meissa L</creator><creator>Cozijn, Frank M J</creator><creator>Ubachs, Wim</creator><creator>Császár, Attila G</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0003-3674-5066</orcidid><orcidid>https://orcid.org/0000-0002-8169-5961</orcidid><orcidid>https://orcid.org/0000-0001-7840-3756</orcidid><orcidid>https://orcid.org/0000-0003-1262-6003</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid></search><sort><creationdate>20240216</creationdate><title>All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O</title><author>Tóbiás, Roland ; Diouf, Meissa L ; Cozijn, Frank M J ; Ubachs, Wim ; Császár, Attila G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_383659713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tóbiás, Roland</creatorcontrib><creatorcontrib>Diouf, Meissa L</creatorcontrib><creatorcontrib>Cozijn, Frank M J</creatorcontrib><creatorcontrib>Ubachs, Wim</creatorcontrib><creatorcontrib>Császár, Attila G</creatorcontrib><collection>PubMed</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tóbiás, Roland</au><au>Diouf, Meissa L</au><au>Cozijn, Frank M J</au><au>Ubachs, Wim</au><au>Császár, Attila G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O</atitle><jtitle>Communications chemistry</jtitle><addtitle>Commun Chem</addtitle><date>2024-02-16</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>34</spage><pages>34-</pages><eissn>2399-3669</eissn><abstract>Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H O and H O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.</abstract><cop>England</cop><pmid>38365971</pmid><doi>10.1038/s42004-024-01103-8</doi><orcidid>https://orcid.org/0000-0003-3674-5066</orcidid><orcidid>https://orcid.org/0000-0002-8169-5961</orcidid><orcidid>https://orcid.org/0000-0001-7840-3756</orcidid><orcidid>https://orcid.org/0000-0003-1262-6003</orcidid><orcidid>https://orcid.org/0000-0001-5640-191X</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2399-3669
ispartof Communications chemistry, 2024-02, Vol.7 (1), p.34
issn 2399-3669
language eng
recordid cdi_pubmed_primary_38365971
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
title All paths lead to hubs in the spectroscopic networks of water isotopologues H 2 16 O and H 2 18 O
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20paths%20lead%20to%20hubs%20in%20the%20spectroscopic%20networks%20of%20water%20isotopologues%20H%202%2016%20O%20and%20H%202%2018%20O&rft.jtitle=Communications%20chemistry&rft.au=T%C3%B3bi%C3%A1s,%20Roland&rft.date=2024-02-16&rft.volume=7&rft.issue=1&rft.spage=34&rft.pages=34-&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-024-01103-8&rft_dat=%3Cpubmed%3E38365971%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_383659713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38365971&rfr_iscdi=true