Loading…

ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments

Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2024-04, Vol.PP, p.1-16
Main Authors: An, Dong, Wang, Hanqing, Wang, Wenguan, Wang, Zun, Huang, Yan, He, Keji, Wang, Liang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume PP
creator An, Dong
Wang, Hanqing
Wang, Wenguan
Wang, Zun
Huang, Yan
He, Keji
Wang, Liang
description Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav .
doi_str_mv 10.1109/TPAMI.2024.3386695
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38593013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10495141</ieee_id><sourcerecordid>3035536961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-1e85fd2076e865a20935734843cf5133de94957725ba67a15e45ccb07bf90de63</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMobk7_gIj00ZfOJLdJG99kVB1M3UP1NaRtWiJdMpu24L-3c1N8unA453Duh9AlwXNCsLjN1vfPyznFNJoDJJwLdoSmRIAIgYE4RlNMOA2ThCYTdOb9B8YkYhhO0QQSJgATmCKZZusXNdwF6eCawdg6yNzWNa42hWqCdaOs3YmVa4N3442z4UrZule1DsaYqVU3aoGxwcLZztje9T5I7WBaZzfadv4cnVSq8fricGfo7SHNFk_h6vVxubhfhQWFiIVEJ6wqKY65TjhTFAtgMURJBEXFCECpRSRYHFOWKx4rwnTEiiLHcV4JXGoOM3Sz79227rPXvpMb4wvdjA_ocZMEDIwBF5yMVrq3Fq3zvtWV3LZmo9ovSbDcgZU_YOUOrDyAHUPXh_4-3-jyL_JLcjRc7Q1Ga_2vcZxNIgLfI7R8sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035536961</pqid></control><display><type>article</type><title>ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments</title><source>IEEE Electronic Library (IEL) Journals</source><creator>An, Dong ; Wang, Hanqing ; Wang, Wenguan ; Wang, Zun ; Huang, Yan ; He, Keji ; Wang, Liang</creator><creatorcontrib>An, Dong ; Wang, Hanqing ; Wang, Wenguan ; Wang, Zun ; Huang, Yan ; He, Keji ; Wang, Liang</creatorcontrib><description>Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3386695</identifier><identifier>PMID: 38593013</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Layout ; Measurement ; Navigation ; Obstacle Avoidance ; Planning ; Semantics ; Task analysis ; Topological Map ; Transformers ; Vision-Language Navigation</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.PP, p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1347-8535 ; 0000-0001-5224-8647 ; 0000-0001-5136-8444 ; 0000-0002-8239-7229 ; 0000-0002-0802-9567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10495141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38593013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Wang, Hanqing</creatorcontrib><creatorcontrib>Wang, Wenguan</creatorcontrib><creatorcontrib>Wang, Zun</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>He, Keji</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><title>ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav .</description><subject>Layout</subject><subject>Measurement</subject><subject>Navigation</subject><subject>Obstacle Avoidance</subject><subject>Planning</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Topological Map</subject><subject>Transformers</subject><subject>Vision-Language Navigation</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMobk7_gIj00ZfOJLdJG99kVB1M3UP1NaRtWiJdMpu24L-3c1N8unA453Duh9AlwXNCsLjN1vfPyznFNJoDJJwLdoSmRIAIgYE4RlNMOA2ThCYTdOb9B8YkYhhO0QQSJgATmCKZZusXNdwF6eCawdg6yNzWNa42hWqCdaOs3YmVa4N3442z4UrZule1DsaYqVU3aoGxwcLZztje9T5I7WBaZzfadv4cnVSq8fricGfo7SHNFk_h6vVxubhfhQWFiIVEJ6wqKY65TjhTFAtgMURJBEXFCECpRSRYHFOWKx4rwnTEiiLHcV4JXGoOM3Sz79227rPXvpMb4wvdjA_ocZMEDIwBF5yMVrq3Fq3zvtWV3LZmo9ovSbDcgZU_YOUOrDyAHUPXh_4-3-jyL_JLcjRc7Q1Ga_2vcZxNIgLfI7R8sA</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>An, Dong</creator><creator>Wang, Hanqing</creator><creator>Wang, Wenguan</creator><creator>Wang, Zun</creator><creator>Huang, Yan</creator><creator>He, Keji</creator><creator>Wang, Liang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1347-8535</orcidid><orcidid>https://orcid.org/0000-0001-5224-8647</orcidid><orcidid>https://orcid.org/0000-0001-5136-8444</orcidid><orcidid>https://orcid.org/0000-0002-8239-7229</orcidid><orcidid>https://orcid.org/0000-0002-0802-9567</orcidid></search><sort><creationdate>20240409</creationdate><title>ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments</title><author>An, Dong ; Wang, Hanqing ; Wang, Wenguan ; Wang, Zun ; Huang, Yan ; He, Keji ; Wang, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-1e85fd2076e865a20935734843cf5133de94957725ba67a15e45ccb07bf90de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Layout</topic><topic>Measurement</topic><topic>Navigation</topic><topic>Obstacle Avoidance</topic><topic>Planning</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Topological Map</topic><topic>Transformers</topic><topic>Vision-Language Navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Wang, Hanqing</creatorcontrib><creatorcontrib>Wang, Wenguan</creatorcontrib><creatorcontrib>Wang, Zun</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>He, Keji</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Dong</au><au>Wang, Hanqing</au><au>Wang, Wenguan</au><au>Wang, Zun</au><au>Huang, Yan</au><au>He, Keji</au><au>Wang, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-04-09</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at https://github.com/MarSaKi/ETPNav .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38593013</pmid><doi>10.1109/TPAMI.2024.3386695</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1347-8535</orcidid><orcidid>https://orcid.org/0000-0001-5224-8647</orcidid><orcidid>https://orcid.org/0000-0001-5136-8444</orcidid><orcidid>https://orcid.org/0000-0002-8239-7229</orcidid><orcidid>https://orcid.org/0000-0002-0802-9567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-04, Vol.PP, p.1-16
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_38593013
source IEEE Electronic Library (IEL) Journals
subjects Layout
Measurement
Navigation
Obstacle Avoidance
Planning
Semantics
Task analysis
Topological Map
Transformers
Vision-Language Navigation
title ETPNav: Evolving Topological Planning for Vision-Language Navigation in Continuous Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ETPNav:%20Evolving%20Topological%20Planning%20for%20Vision-Language%20Navigation%20in%20Continuous%20Environments&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=An,%20Dong&rft.date=2024-04-09&rft.volume=PP&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3386695&rft_dat=%3Cproquest_pubme%3E3035536961%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2345-1e85fd2076e865a20935734843cf5133de94957725ba67a15e45ccb07bf90de63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035536961&rft_id=info:pmid/38593013&rft_ieee_id=10495141&rfr_iscdi=true