Loading…
Simulation of interlayer coupling for electroactive covalent organic framework design
Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, a...
Saved in:
Published in: | The Journal of chemical physics 2024-05, Vol.160 (18) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3 |
container_end_page | |
container_issue | 18 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Leo, Tanner M. Robbins, Megan Sullivan, Alana Thornes, Henry Fitzsimmons, Garrett Goodey, Alyssa Kowalczyk, Tim |
description | Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs. |
doi_str_mv | 10.1063/5.0206246 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38721904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053979975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ18tjnK4hcIHtRzyaaTJdo2a9Iq_nu77urBg6c5zMM7w0vIIYVzCopfyHNgoJhQG2RCodR5oTRskgkAo7lWoHbIbkovAEALJrbJDi8LRjWICXl-9O3QmN6HLgsu812PsTGfGDMbhkXju3nmQsywQdvHYGzv33FcvZsGuz4LcW46bzMXTYsfIb5mNSY_7_bJljNNwoP13CPP11dP09v8_uHmbnp5n1sueJ9bKmpAU8wU18JpLSgrBTDOjKVOG4NSCJDUKlmqmXSs5EZKN_6NQlpe13yPnKxyFzG8DZj6qvXJYtOYDsOQKg6S60LrQo70-A99CUPsxu-WarzLpFqq05WyMaQU0VWL6FsTPysK1bLrSlbrrkd7tE4cZi3Wv_Kn3BGcrUCyvv-u-J-0L-ighbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052842565</pqid></control><display><type>article</type><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</creator><creatorcontrib>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</creatorcontrib><description>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0206246</identifier><identifier>PMID: 38721904</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carrier transport ; Charge transfer ; Couplings ; Current carriers ; Electronic structure ; Interlayers ; Molecular dynamics ; Potential energy</subject><ispartof>The Journal of chemical physics, 2024-05, Vol.160 (18)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</cites><orcidid>0009-0004-2941-6824 ; 0009-0002-0926-7716 ; 0000-0003-1806-059X ; 0009-0003-7796-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0206246$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76154</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38721904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leo, Tanner M.</creatorcontrib><creatorcontrib>Robbins, Megan</creatorcontrib><creatorcontrib>Sullivan, Alana</creatorcontrib><creatorcontrib>Thornes, Henry</creatorcontrib><creatorcontrib>Fitzsimmons, Garrett</creatorcontrib><creatorcontrib>Goodey, Alyssa</creatorcontrib><creatorcontrib>Kowalczyk, Tim</creatorcontrib><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</description><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Couplings</subject><subject>Current carriers</subject><subject>Electronic structure</subject><subject>Interlayers</subject><subject>Molecular dynamics</subject><subject>Potential energy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ18tjnK4hcIHtRzyaaTJdo2a9Iq_nu77urBg6c5zMM7w0vIIYVzCopfyHNgoJhQG2RCodR5oTRskgkAo7lWoHbIbkovAEALJrbJDi8LRjWICXl-9O3QmN6HLgsu812PsTGfGDMbhkXju3nmQsywQdvHYGzv33FcvZsGuz4LcW46bzMXTYsfIb5mNSY_7_bJljNNwoP13CPP11dP09v8_uHmbnp5n1sueJ9bKmpAU8wU18JpLSgrBTDOjKVOG4NSCJDUKlmqmXSs5EZKN_6NQlpe13yPnKxyFzG8DZj6qvXJYtOYDsOQKg6S60LrQo70-A99CUPsxu-WarzLpFqq05WyMaQU0VWL6FsTPysK1bLrSlbrrkd7tE4cZi3Wv_Kn3BGcrUCyvv-u-J-0L-ighbQ</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Leo, Tanner M.</creator><creator>Robbins, Megan</creator><creator>Sullivan, Alana</creator><creator>Thornes, Henry</creator><creator>Fitzsimmons, Garrett</creator><creator>Goodey, Alyssa</creator><creator>Kowalczyk, Tim</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-2941-6824</orcidid><orcidid>https://orcid.org/0009-0002-0926-7716</orcidid><orcidid>https://orcid.org/0000-0003-1806-059X</orcidid><orcidid>https://orcid.org/0009-0003-7796-2558</orcidid></search><sort><creationdate>20240514</creationdate><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><author>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Couplings</topic><topic>Current carriers</topic><topic>Electronic structure</topic><topic>Interlayers</topic><topic>Molecular dynamics</topic><topic>Potential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leo, Tanner M.</creatorcontrib><creatorcontrib>Robbins, Megan</creatorcontrib><creatorcontrib>Sullivan, Alana</creatorcontrib><creatorcontrib>Thornes, Henry</creatorcontrib><creatorcontrib>Fitzsimmons, Garrett</creatorcontrib><creatorcontrib>Goodey, Alyssa</creatorcontrib><creatorcontrib>Kowalczyk, Tim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leo, Tanner M.</au><au>Robbins, Megan</au><au>Sullivan, Alana</au><au>Thornes, Henry</au><au>Fitzsimmons, Garrett</au><au>Goodey, Alyssa</au><au>Kowalczyk, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of interlayer coupling for electroactive covalent organic framework design</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>160</volume><issue>18</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38721904</pmid><doi>10.1063/5.0206246</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-2941-6824</orcidid><orcidid>https://orcid.org/0009-0002-0926-7716</orcidid><orcidid>https://orcid.org/0000-0003-1806-059X</orcidid><orcidid>https://orcid.org/0009-0003-7796-2558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-05, Vol.160 (18) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_38721904 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Carrier transport Charge transfer Couplings Current carriers Electronic structure Interlayers Molecular dynamics Potential energy |
title | Simulation of interlayer coupling for electroactive covalent organic framework design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20interlayer%20coupling%20for%20electroactive%20covalent%20organic%20framework%20design&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Leo,%20Tanner%20M.&rft.date=2024-05-14&rft.volume=160&rft.issue=18&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0206246&rft_dat=%3Cproquest_pubme%3E3053979975%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052842565&rft_id=info:pmid/38721904&rfr_iscdi=true |