Loading…

Simulation of interlayer coupling for electroactive covalent organic framework design

Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-05, Vol.160 (18)
Main Authors: Leo, Tanner M., Robbins, Megan, Sullivan, Alana, Thornes, Henry, Fitzsimmons, Garrett, Goodey, Alyssa, Kowalczyk, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3
container_end_page
container_issue 18
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Leo, Tanner M.
Robbins, Megan
Sullivan, Alana
Thornes, Henry
Fitzsimmons, Garrett
Goodey, Alyssa
Kowalczyk, Tim
description Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.
doi_str_mv 10.1063/5.0206246
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38721904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053979975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ18tjnK4hcIHtRzyaaTJdo2a9Iq_nu77urBg6c5zMM7w0vIIYVzCopfyHNgoJhQG2RCodR5oTRskgkAo7lWoHbIbkovAEALJrbJDi8LRjWICXl-9O3QmN6HLgsu812PsTGfGDMbhkXju3nmQsywQdvHYGzv33FcvZsGuz4LcW46bzMXTYsfIb5mNSY_7_bJljNNwoP13CPP11dP09v8_uHmbnp5n1sueJ9bKmpAU8wU18JpLSgrBTDOjKVOG4NSCJDUKlmqmXSs5EZKN_6NQlpe13yPnKxyFzG8DZj6qvXJYtOYDsOQKg6S60LrQo70-A99CUPsxu-WarzLpFqq05WyMaQU0VWL6FsTPysK1bLrSlbrrkd7tE4cZi3Wv_Kn3BGcrUCyvv-u-J-0L-ighbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052842565</pqid></control><display><type>article</type><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</creator><creatorcontrib>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</creatorcontrib><description>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0206246</identifier><identifier>PMID: 38721904</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carrier transport ; Charge transfer ; Couplings ; Current carriers ; Electronic structure ; Interlayers ; Molecular dynamics ; Potential energy</subject><ispartof>The Journal of chemical physics, 2024-05, Vol.160 (18)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</cites><orcidid>0009-0004-2941-6824 ; 0009-0002-0926-7716 ; 0000-0003-1806-059X ; 0009-0003-7796-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0206246$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76154</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38721904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leo, Tanner M.</creatorcontrib><creatorcontrib>Robbins, Megan</creatorcontrib><creatorcontrib>Sullivan, Alana</creatorcontrib><creatorcontrib>Thornes, Henry</creatorcontrib><creatorcontrib>Fitzsimmons, Garrett</creatorcontrib><creatorcontrib>Goodey, Alyssa</creatorcontrib><creatorcontrib>Kowalczyk, Tim</creatorcontrib><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</description><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Couplings</subject><subject>Current carriers</subject><subject>Electronic structure</subject><subject>Interlayers</subject><subject>Molecular dynamics</subject><subject>Potential energy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ18tjnK4hcIHtRzyaaTJdo2a9Iq_nu77urBg6c5zMM7w0vIIYVzCopfyHNgoJhQG2RCodR5oTRskgkAo7lWoHbIbkovAEALJrbJDi8LRjWICXl-9O3QmN6HLgsu812PsTGfGDMbhkXju3nmQsywQdvHYGzv33FcvZsGuz4LcW46bzMXTYsfIb5mNSY_7_bJljNNwoP13CPP11dP09v8_uHmbnp5n1sueJ9bKmpAU8wU18JpLSgrBTDOjKVOG4NSCJDUKlmqmXSs5EZKN_6NQlpe13yPnKxyFzG8DZj6qvXJYtOYDsOQKg6S60LrQo70-A99CUPsxu-WarzLpFqq05WyMaQU0VWL6FsTPysK1bLrSlbrrkd7tE4cZi3Wv_Kn3BGcrUCyvv-u-J-0L-ighbQ</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Leo, Tanner M.</creator><creator>Robbins, Megan</creator><creator>Sullivan, Alana</creator><creator>Thornes, Henry</creator><creator>Fitzsimmons, Garrett</creator><creator>Goodey, Alyssa</creator><creator>Kowalczyk, Tim</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-2941-6824</orcidid><orcidid>https://orcid.org/0009-0002-0926-7716</orcidid><orcidid>https://orcid.org/0000-0003-1806-059X</orcidid><orcidid>https://orcid.org/0009-0003-7796-2558</orcidid></search><sort><creationdate>20240514</creationdate><title>Simulation of interlayer coupling for electroactive covalent organic framework design</title><author>Leo, Tanner M. ; Robbins, Megan ; Sullivan, Alana ; Thornes, Henry ; Fitzsimmons, Garrett ; Goodey, Alyssa ; Kowalczyk, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Couplings</topic><topic>Current carriers</topic><topic>Electronic structure</topic><topic>Interlayers</topic><topic>Molecular dynamics</topic><topic>Potential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leo, Tanner M.</creatorcontrib><creatorcontrib>Robbins, Megan</creatorcontrib><creatorcontrib>Sullivan, Alana</creatorcontrib><creatorcontrib>Thornes, Henry</creatorcontrib><creatorcontrib>Fitzsimmons, Garrett</creatorcontrib><creatorcontrib>Goodey, Alyssa</creatorcontrib><creatorcontrib>Kowalczyk, Tim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leo, Tanner M.</au><au>Robbins, Megan</au><au>Sullivan, Alana</au><au>Thornes, Henry</au><au>Fitzsimmons, Garrett</au><au>Goodey, Alyssa</au><au>Kowalczyk, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of interlayer coupling for electroactive covalent organic framework design</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-05-14</date><risdate>2024</risdate><volume>160</volume><issue>18</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Porous, stacked two-dimensional covalent organic frameworks (2D COFs) bearing semiconducting linkers can support directional charge transfer across adjacent layers of the COF. To better inform the current and possible future design rules for enhancing electron and hole transport in such materials, an understanding of how linker selection and functionalization affects interlayer electronic couplings is essential. We report electronic structure simulation and analysis of electronic couplings across adjacent linker units and to encapsulated species in functionalized electroactive 2D COFs. The detailed dependence of these electronic couplings on interlayer interactions is examined through scans along key interlayer degrees of freedom and through configurational sampling from equilibrium molecular dynamics on semiempirical potential energy surfaces. Beyond affirming the sensitivity of the electronic coupling to interlayer distance and orientation, these studies offer guidance toward linker functionalization strategies for enhancing charge carrier transport in electroactive 2D COFs.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38721904</pmid><doi>10.1063/5.0206246</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-2941-6824</orcidid><orcidid>https://orcid.org/0009-0002-0926-7716</orcidid><orcidid>https://orcid.org/0000-0003-1806-059X</orcidid><orcidid>https://orcid.org/0009-0003-7796-2558</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-05, Vol.160 (18)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_38721904
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Carrier transport
Charge transfer
Couplings
Current carriers
Electronic structure
Interlayers
Molecular dynamics
Potential energy
title Simulation of interlayer coupling for electroactive covalent organic framework design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20interlayer%20coupling%20for%20electroactive%20covalent%20organic%20framework%20design&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Leo,%20Tanner%20M.&rft.date=2024-05-14&rft.volume=160&rft.issue=18&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0206246&rft_dat=%3Cproquest_pubme%3E3053979975%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-c14d0ea7b6394f99412840232ac1f9aae544051c6586b5f283a55f904e45c3dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052842565&rft_id=info:pmid/38721904&rfr_iscdi=true