Loading…
Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries
Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and...
Saved in:
Published in: | RSC advances 2024-05, Vol.14 (22), p.15261-15269 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3 |
container_end_page | 15269 |
container_issue | 22 |
container_start_page | 15261 |
container_title | RSC advances |
container_volume | 14 |
creator | Ma, Shiping Wei, Kaiyuan Zhao, Yu Qiu, Jinxu Xu, Rongrui Li, Hongliang Zhang, Hui Cui, Yanhua |
description | Lithium cobalt oxide (LiCoO
2
) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO
2
and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V
2
O
5
) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V
2
O
5
thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V
2
O
5
interfacial layer also effectively suppressed the side reactions between LiCoO
2
and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V
2
O
5
layer, TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm thin V
2
O
5
interface modification layer exhibited a much smaller charge transfer impedance (
R
ct
) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm
−2
. This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm V
2
O
5
thin layer.
The V
2
O
5
interfacial layer can effectively suppress side reaction between a LiCoO
2
cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries. |
doi_str_mv | 10.1039/d4ra01849d |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38741967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060788093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxQdRbGm7ca8E3IgwNV-Tj5WU1i8oFETdhkxypy8lkzyTGbH_vamvPqt3cy_cH4dzOF33jOBTgpl-43mxmCiu_aPukGIueoqFfvzgPuhOar3BbcRAqCBPuwOmJCdayMPOfrPJ-rDOaAtpyT-DBxTSAmWyLtiIor2FgiDZMUJFm3C9aWCZcpltcoBsjH3NMfi-LnYBtGxCQlOIMxrt0lQC1OPuyWRjhZP7fdR9ff_uy_nH_vLqw6fzs8veMaWWnlGpyUSF5g5rxUYOcsKKE8-wlIriwY_OS-HoBAPXylPsATQlHiuntBvZUfd2p7tdxxm8a3GKjWZbwmzLrck2mH8_KWzMdf5hCMFKDww3hVf3CiV_X6EuZg7VQYw2QV6rYXjgzZEgsqEv_0Nv8lpSy9cogaVSWLNGvd5RruRaC0x7NwSbu_bMBf989ru9iwa_eOh_j_7pqgHPd0Cpbv_9Wz_7BQ2Nn7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060788093</pqid></control><display><type>article</type><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><source>PubMed Central</source><creator>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</creator><creatorcontrib>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</creatorcontrib><description>Lithium cobalt oxide (LiCoO
2
) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO
2
and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V
2
O
5
) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V
2
O
5
thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V
2
O
5
interfacial layer also effectively suppressed the side reactions between LiCoO
2
and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V
2
O
5
layer, TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm thin V
2
O
5
interface modification layer exhibited a much smaller charge transfer impedance (
R
ct
) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm
−2
. This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm V
2
O
5
thin layer.
The V
2
O
5
interfacial layer can effectively suppress side reaction between a LiCoO
2
cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra01849d</identifier><identifier>PMID: 38741967</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Cathodic polarization ; Charge transfer ; Chemistry ; Cobalt oxides ; Discharge ; Electrode polarization ; Electrolytes ; Ion transport ; Lithium compounds ; Lithium ions ; Magnetron sputtering ; Solid state ; Thin films ; Vanadium pentoxide</subject><ispartof>RSC advances, 2024-05, Vol.14 (22), p.15261-15269</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</cites><orcidid>0000-0002-9168-9530 ; 0000-0002-1592-7103 ; 0009-0000-5287-4680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089530/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089530/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38741967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Shiping</creatorcontrib><creatorcontrib>Wei, Kaiyuan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Qiu, Jinxu</creatorcontrib><creatorcontrib>Xu, Rongrui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Lithium cobalt oxide (LiCoO
2
) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO
2
and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V
2
O
5
) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V
2
O
5
thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V
2
O
5
interfacial layer also effectively suppressed the side reactions between LiCoO
2
and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V
2
O
5
layer, TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm thin V
2
O
5
interface modification layer exhibited a much smaller charge transfer impedance (
R
ct
) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm
−2
. This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm V
2
O
5
thin layer.
The V
2
O
5
interfacial layer can effectively suppress side reaction between a LiCoO
2
cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Cobalt oxides</subject><subject>Discharge</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Lithium compounds</subject><subject>Lithium ions</subject><subject>Magnetron sputtering</subject><subject>Solid state</subject><subject>Thin films</subject><subject>Vanadium pentoxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxQdRbGm7ca8E3IgwNV-Tj5WU1i8oFETdhkxypy8lkzyTGbH_vamvPqt3cy_cH4dzOF33jOBTgpl-43mxmCiu_aPukGIueoqFfvzgPuhOar3BbcRAqCBPuwOmJCdayMPOfrPJ-rDOaAtpyT-DBxTSAmWyLtiIor2FgiDZMUJFm3C9aWCZcpltcoBsjH3NMfi-LnYBtGxCQlOIMxrt0lQC1OPuyWRjhZP7fdR9ff_uy_nH_vLqw6fzs8veMaWWnlGpyUSF5g5rxUYOcsKKE8-wlIriwY_OS-HoBAPXylPsATQlHiuntBvZUfd2p7tdxxm8a3GKjWZbwmzLrck2mH8_KWzMdf5hCMFKDww3hVf3CiV_X6EuZg7VQYw2QV6rYXjgzZEgsqEv_0Nv8lpSy9cogaVSWLNGvd5RruRaC0x7NwSbu_bMBf989ru9iwa_eOh_j_7pqgHPd0Cpbv_9Wz_7BQ2Nn7o</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Ma, Shiping</creator><creator>Wei, Kaiyuan</creator><creator>Zhao, Yu</creator><creator>Qiu, Jinxu</creator><creator>Xu, Rongrui</creator><creator>Li, Hongliang</creator><creator>Zhang, Hui</creator><creator>Cui, Yanhua</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9168-9530</orcidid><orcidid>https://orcid.org/0000-0002-1592-7103</orcidid><orcidid>https://orcid.org/0009-0000-5287-4680</orcidid></search><sort><creationdate>20240510</creationdate><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><author>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Cobalt oxides</topic><topic>Discharge</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Lithium compounds</topic><topic>Lithium ions</topic><topic>Magnetron sputtering</topic><topic>Solid state</topic><topic>Thin films</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shiping</creatorcontrib><creatorcontrib>Wei, Kaiyuan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Qiu, Jinxu</creatorcontrib><creatorcontrib>Xu, Rongrui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shiping</au><au>Wei, Kaiyuan</au><au>Zhao, Yu</au><au>Qiu, Jinxu</au><au>Xu, Rongrui</au><au>Li, Hongliang</au><au>Zhang, Hui</au><au>Cui, Yanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-05-10</date><risdate>2024</risdate><volume>14</volume><issue>22</issue><spage>15261</spage><epage>15269</epage><pages>15261-15269</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Lithium cobalt oxide (LiCoO
2
) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO
2
and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V
2
O
5
) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V
2
O
5
thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V
2
O
5
interfacial layer also effectively suppressed the side reactions between LiCoO
2
and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V
2
O
5
layer, TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm thin V
2
O
5
interface modification layer exhibited a much smaller charge transfer impedance (
R
ct
) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm
−2
. This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO
2
/V
2
O
5
/LiPON/Li with a 5 nm V
2
O
5
thin layer.
The V
2
O
5
interfacial layer can effectively suppress side reaction between a LiCoO
2
cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38741967</pmid><doi>10.1039/d4ra01849d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9168-9530</orcidid><orcidid>https://orcid.org/0000-0002-1592-7103</orcidid><orcidid>https://orcid.org/0009-0000-5287-4680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-05, Vol.14 (22), p.15261-15269 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmed_primary_38741967 |
source | PubMed Central |
subjects | Batteries Cathodes Cathodic polarization Charge transfer Chemistry Cobalt oxides Discharge Electrode polarization Electrolytes Ion transport Lithium compounds Lithium ions Magnetron sputtering Solid state Thin films Vanadium pentoxide |
title | Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanadium%20pentoxide%20interfacial%20layer%20enables%20high%20performance%20all-solid-state%20thin%20film%20batteries&rft.jtitle=RSC%20advances&rft.au=Ma,%20Shiping&rft.date=2024-05-10&rft.volume=14&rft.issue=22&rft.spage=15261&rft.epage=15269&rft.pages=15261-15269&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra01849d&rft_dat=%3Cproquest_pubme%3E3060788093%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060788093&rft_id=info:pmid/38741967&rfr_iscdi=true |