Loading…

Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries

Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2024-05, Vol.14 (22), p.15261-15269
Main Authors: Ma, Shiping, Wei, Kaiyuan, Zhao, Yu, Qiu, Jinxu, Xu, Rongrui, Li, Hongliang, Zhang, Hui, Cui, Yanhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3
container_end_page 15269
container_issue 22
container_start_page 15261
container_title RSC advances
container_volume 14
creator Ma, Shiping
Wei, Kaiyuan
Zhao, Yu
Qiu, Jinxu
Xu, Rongrui
Li, Hongliang
Zhang, Hui
Cui, Yanhua
description Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V 2 O 5 ) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V 2 O 5 thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V 2 O 5 interfacial layer also effectively suppressed the side reactions between LiCoO 2 and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V 2 O 5 layer, TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm thin V 2 O 5 interface modification layer exhibited a much smaller charge transfer impedance ( R ct ) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm −2 . This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm V 2 O 5 thin layer. The V 2 O 5 interfacial layer can effectively suppress side reaction between a LiCoO 2 cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.
doi_str_mv 10.1039/d4ra01849d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38741967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060788093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxQdRbGm7ca8E3IgwNV-Tj5WU1i8oFETdhkxypy8lkzyTGbH_vamvPqt3cy_cH4dzOF33jOBTgpl-43mxmCiu_aPukGIueoqFfvzgPuhOar3BbcRAqCBPuwOmJCdayMPOfrPJ-rDOaAtpyT-DBxTSAmWyLtiIor2FgiDZMUJFm3C9aWCZcpltcoBsjH3NMfi-LnYBtGxCQlOIMxrt0lQC1OPuyWRjhZP7fdR9ff_uy_nH_vLqw6fzs8veMaWWnlGpyUSF5g5rxUYOcsKKE8-wlIriwY_OS-HoBAPXylPsATQlHiuntBvZUfd2p7tdxxm8a3GKjWZbwmzLrck2mH8_KWzMdf5hCMFKDww3hVf3CiV_X6EuZg7VQYw2QV6rYXjgzZEgsqEv_0Nv8lpSy9cogaVSWLNGvd5RruRaC0x7NwSbu_bMBf989ru9iwa_eOh_j_7pqgHPd0Cpbv_9Wz_7BQ2Nn7o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060788093</pqid></control><display><type>article</type><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><source>PubMed Central</source><creator>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</creator><creatorcontrib>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</creatorcontrib><description>Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V 2 O 5 ) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V 2 O 5 thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V 2 O 5 interfacial layer also effectively suppressed the side reactions between LiCoO 2 and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V 2 O 5 layer, TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm thin V 2 O 5 interface modification layer exhibited a much smaller charge transfer impedance ( R ct ) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm −2 . This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm V 2 O 5 thin layer. The V 2 O 5 interfacial layer can effectively suppress side reaction between a LiCoO 2 cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra01849d</identifier><identifier>PMID: 38741967</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Cathodic polarization ; Charge transfer ; Chemistry ; Cobalt oxides ; Discharge ; Electrode polarization ; Electrolytes ; Ion transport ; Lithium compounds ; Lithium ions ; Magnetron sputtering ; Solid state ; Thin films ; Vanadium pentoxide</subject><ispartof>RSC advances, 2024-05, Vol.14 (22), p.15261-15269</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</cites><orcidid>0000-0002-9168-9530 ; 0000-0002-1592-7103 ; 0009-0000-5287-4680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089530/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089530/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38741967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Shiping</creatorcontrib><creatorcontrib>Wei, Kaiyuan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Qiu, Jinxu</creatorcontrib><creatorcontrib>Xu, Rongrui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V 2 O 5 ) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V 2 O 5 thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V 2 O 5 interfacial layer also effectively suppressed the side reactions between LiCoO 2 and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V 2 O 5 layer, TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm thin V 2 O 5 interface modification layer exhibited a much smaller charge transfer impedance ( R ct ) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm −2 . This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm V 2 O 5 thin layer. The V 2 O 5 interfacial layer can effectively suppress side reaction between a LiCoO 2 cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Cobalt oxides</subject><subject>Discharge</subject><subject>Electrode polarization</subject><subject>Electrolytes</subject><subject>Ion transport</subject><subject>Lithium compounds</subject><subject>Lithium ions</subject><subject>Magnetron sputtering</subject><subject>Solid state</subject><subject>Thin films</subject><subject>Vanadium pentoxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxQdRbGm7ca8E3IgwNV-Tj5WU1i8oFETdhkxypy8lkzyTGbH_vamvPqt3cy_cH4dzOF33jOBTgpl-43mxmCiu_aPukGIueoqFfvzgPuhOar3BbcRAqCBPuwOmJCdayMPOfrPJ-rDOaAtpyT-DBxTSAmWyLtiIor2FgiDZMUJFm3C9aWCZcpltcoBsjH3NMfi-LnYBtGxCQlOIMxrt0lQC1OPuyWRjhZP7fdR9ff_uy_nH_vLqw6fzs8veMaWWnlGpyUSF5g5rxUYOcsKKE8-wlIriwY_OS-HoBAPXylPsATQlHiuntBvZUfd2p7tdxxm8a3GKjWZbwmzLrck2mH8_KWzMdf5hCMFKDww3hVf3CiV_X6EuZg7VQYw2QV6rYXjgzZEgsqEv_0Nv8lpSy9cogaVSWLNGvd5RruRaC0x7NwSbu_bMBf989ru9iwa_eOh_j_7pqgHPd0Cpbv_9Wz_7BQ2Nn7o</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Ma, Shiping</creator><creator>Wei, Kaiyuan</creator><creator>Zhao, Yu</creator><creator>Qiu, Jinxu</creator><creator>Xu, Rongrui</creator><creator>Li, Hongliang</creator><creator>Zhang, Hui</creator><creator>Cui, Yanhua</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9168-9530</orcidid><orcidid>https://orcid.org/0000-0002-1592-7103</orcidid><orcidid>https://orcid.org/0009-0000-5287-4680</orcidid></search><sort><creationdate>20240510</creationdate><title>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</title><author>Ma, Shiping ; Wei, Kaiyuan ; Zhao, Yu ; Qiu, Jinxu ; Xu, Rongrui ; Li, Hongliang ; Zhang, Hui ; Cui, Yanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Cobalt oxides</topic><topic>Discharge</topic><topic>Electrode polarization</topic><topic>Electrolytes</topic><topic>Ion transport</topic><topic>Lithium compounds</topic><topic>Lithium ions</topic><topic>Magnetron sputtering</topic><topic>Solid state</topic><topic>Thin films</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shiping</creatorcontrib><creatorcontrib>Wei, Kaiyuan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Qiu, Jinxu</creatorcontrib><creatorcontrib>Xu, Rongrui</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Cui, Yanhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shiping</au><au>Wei, Kaiyuan</au><au>Zhao, Yu</au><au>Qiu, Jinxu</au><au>Xu, Rongrui</au><au>Li, Hongliang</au><au>Zhang, Hui</au><au>Cui, Yanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2024-05-10</date><risdate>2024</risdate><volume>14</volume><issue>22</issue><spage>15261</spage><epage>15269</epage><pages>15261-15269</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Lithium cobalt oxide (LiCoO 2 ) is considered as one of the promising building blocks that can be used to fabricate all-solid-state thin film batteries (TFBs) because of its easy accessibility, high working voltage, and high energy density. However, the slow interfacial dynamics between LiCoO 2 and LiPON in these TFBs results in undesirable side reactions and severe degradation of cycling and rate performance. Herein, amorphous vanadium pentoxide (V 2 O 5 ) film was employed as the interfacial layer of a cathode-electrolyte solid-solid interface to fabricate all-solid-state TFBs using a magnetron sputtering method. The V 2 O 5 thin film layer assisted in the construction of an ion transport network at the cathode/electrolyte interface, thus reducing the electrochemical redox polarization potential. The V 2 O 5 interfacial layer also effectively suppressed the side reactions between LiCoO 2 and LiPON. In addition, the interfacial resistance of TFBs was significantly decreased by optimizing the thickness of the interfacial modification layer. Compared to TFBs without the V 2 O 5 layer, TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm thin V 2 O 5 interface modification layer exhibited a much smaller charge transfer impedance ( R ct ) value, significantly improved discharge specific capacity, and superior cycling and rate performance. The discharge capacity remained at 75.6% of its initial value after 1000 cycles at a current density of 100 μA cm −2 . This was mainly attributed to the enhanced lithium ion transport kinetics and the suppression of severe side reactions at the cathode-electrolyte interface in TFBs based on LiCoO 2 /V 2 O 5 /LiPON/Li with a 5 nm V 2 O 5 thin layer. The V 2 O 5 interfacial layer can effectively suppress side reaction between a LiCoO 2 cathode and LiPON electrolyte interface, which enables enhanced lithium ion transport kinetics and electrochemical performance in all-solid-state thin film batteries.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38741967</pmid><doi>10.1039/d4ra01849d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9168-9530</orcidid><orcidid>https://orcid.org/0000-0002-1592-7103</orcidid><orcidid>https://orcid.org/0009-0000-5287-4680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-05, Vol.14 (22), p.15261-15269
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmed_primary_38741967
source PubMed Central
subjects Batteries
Cathodes
Cathodic polarization
Charge transfer
Chemistry
Cobalt oxides
Discharge
Electrode polarization
Electrolytes
Ion transport
Lithium compounds
Lithium ions
Magnetron sputtering
Solid state
Thin films
Vanadium pentoxide
title Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vanadium%20pentoxide%20interfacial%20layer%20enables%20high%20performance%20all-solid-state%20thin%20film%20batteries&rft.jtitle=RSC%20advances&rft.au=Ma,%20Shiping&rft.date=2024-05-10&rft.volume=14&rft.issue=22&rft.spage=15261&rft.epage=15269&rft.pages=15261-15269&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra01849d&rft_dat=%3Cproquest_pubme%3E3060788093%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-32791f2694c0983b4e7f0841d30778205dbcd76c2fe5498d20dee921d08c89cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3060788093&rft_id=info:pmid/38741967&rfr_iscdi=true