Loading…

Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion

Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2024-04, Vol.669, p.927
Main Authors: Jiang, Ping, Zhou, Benji, He, Rui, Li, Yanyan, Xu, Nengneng, Qiao, Jinli, Ruan, Dianbo
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 927
container_title Journal of colloid and interface science
container_volume 669
creator Jiang, Ping
Zhou, Benji
He, Rui
Li, Yanyan
Xu, Nengneng
Qiao, Jinli
Ruan, Dianbo
description Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/Ni P @NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/Ni P @NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm , respectively. Notably, the NPO/Ni P @NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm with long-term stability for overall water splitting using the NPO/Ni P @NF|| NPO/Ni P @NF cell, surpassing that of the Pt/C-RuO (2.24 V@ 100 mA cm ). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between Ni P and Ni P that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.
doi_str_mv 10.1016/j.jcis.2024.04.168
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38754145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38754145</sourcerecordid><originalsourceid>FETCH-pubmed_primary_387541453</originalsourceid><addsrcrecordid>eNqFj01OwzAUhC0kRMvPBVigd4A6tZukP2sEopvSBfvKOM-Jg2tHzwmtb8NRCRKsWc1o9GlGw9i9FJkUcjlvs1bbmC3EoshEkcnl-oJNpdiUfCVFPmHXMbZCSFmWmys2yderspBFOWVfW98jGaUR0NfWI5L1NQQDjUVSpBurlQPjwgmJO_uBsJvBfgavvAodVrCzcIY9JIjoDI9D1wXqxxwd6p5ChRFMoLGtblwCNMZqi76Hkxp3eR94kyoKNXowA7p5OKcfr4P_RIo2-Ft2aZSLePerN-zh-ent8YV3w_sRq0NH9qgoHf4u5f8C3xTRX_Y</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion</title><source>ScienceDirect Freedom Collection</source><creator>Jiang, Ping ; Zhou, Benji ; He, Rui ; Li, Yanyan ; Xu, Nengneng ; Qiao, Jinli ; Ruan, Dianbo</creator><creatorcontrib>Jiang, Ping ; Zhou, Benji ; He, Rui ; Li, Yanyan ; Xu, Nengneng ; Qiao, Jinli ; Ruan, Dianbo</creatorcontrib><description>Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/Ni P @NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/Ni P @NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm , respectively. Notably, the NPO/Ni P @NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm with long-term stability for overall water splitting using the NPO/Ni P @NF|| NPO/Ni P @NF cell, surpassing that of the Pt/C-RuO (2.24 V@ 100 mA cm ). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between Ni P and Ni P that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.</description><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.04.168</identifier><identifier>PMID: 38754145</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of colloid and interface science, 2024-04, Vol.669, p.927</ispartof><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38754145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Zhou, Benji</creatorcontrib><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Xu, Nengneng</creatorcontrib><creatorcontrib>Qiao, Jinli</creatorcontrib><creatorcontrib>Ruan, Dianbo</creatorcontrib><title>Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/Ni P @NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/Ni P @NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm , respectively. Notably, the NPO/Ni P @NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm with long-term stability for overall water splitting using the NPO/Ni P @NF|| NPO/Ni P @NF cell, surpassing that of the Pt/C-RuO (2.24 V@ 100 mA cm ). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between Ni P and Ni P that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.</description><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj01OwzAUhC0kRMvPBVigd4A6tZukP2sEopvSBfvKOM-Jg2tHzwmtb8NRCRKsWc1o9GlGw9i9FJkUcjlvs1bbmC3EoshEkcnl-oJNpdiUfCVFPmHXMbZCSFmWmys2yderspBFOWVfW98jGaUR0NfWI5L1NQQDjUVSpBurlQPjwgmJO_uBsJvBfgavvAodVrCzcIY9JIjoDI9D1wXqxxwd6p5ChRFMoLGtblwCNMZqi76Hkxp3eR94kyoKNXowA7p5OKcfr4P_RIo2-Ft2aZSLePerN-zh-ent8YV3w_sRq0NH9qgoHf4u5f8C3xTRX_Y</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Jiang, Ping</creator><creator>Zhou, Benji</creator><creator>He, Rui</creator><creator>Li, Yanyan</creator><creator>Xu, Nengneng</creator><creator>Qiao, Jinli</creator><creator>Ruan, Dianbo</creator><scope>NPM</scope></search><sort><creationdate>20240424</creationdate><title>Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion</title><author>Jiang, Ping ; Zhou, Benji ; He, Rui ; Li, Yanyan ; Xu, Nengneng ; Qiao, Jinli ; Ruan, Dianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_387541453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ping</creatorcontrib><creatorcontrib>Zhou, Benji</creatorcontrib><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Xu, Nengneng</creatorcontrib><creatorcontrib>Qiao, Jinli</creatorcontrib><creatorcontrib>Ruan, Dianbo</creatorcontrib><collection>PubMed</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ping</au><au>Zhou, Benji</au><au>He, Rui</au><au>Li, Yanyan</au><au>Xu, Nengneng</au><au>Qiao, Jinli</au><au>Ruan, Dianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-04-24</date><risdate>2024</risdate><volume>669</volume><spage>927</spage><pages>927-</pages><eissn>1095-7103</eissn><abstract>Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/Ni P @NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/Ni P @NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm , respectively. Notably, the NPO/Ni P @NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm with long-term stability for overall water splitting using the NPO/Ni P @NF|| NPO/Ni P @NF cell, surpassing that of the Pt/C-RuO (2.24 V@ 100 mA cm ). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between Ni P and Ni P that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.</abstract><cop>United States</cop><pmid>38754145</pmid><doi>10.1016/j.jcis.2024.04.168</doi></addata></record>
fulltext fulltext
identifier EISSN: 1095-7103
ispartof Journal of colloid and interface science, 2024-04, Vol.669, p.927
issn 1095-7103
language eng
recordid cdi_pubmed_primary_38754145
source ScienceDirect Freedom Collection
title Interface engineering of hierarchical flower-like N, P, O-doped Ni x P y self-supported electrodes for highly efficient water-to-hydrogen fuel/oxygen conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20engineering%20of%20hierarchical%20flower-like%20N,%20P,%20O-doped%20Ni%20x%20P%20y%20self-supported%20electrodes%20for%20highly%20efficient%20water-to-hydrogen%20fuel/oxygen%20conversion&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Jiang,%20Ping&rft.date=2024-04-24&rft.volume=669&rft.spage=927&rft.pages=927-&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.04.168&rft_dat=%3Cpubmed%3E38754145%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_387541453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38754145&rfr_iscdi=true